The work described the synthesis and evaluation of PEI-g-comb-PEG-transferrin as a potential system for gene therapy in vitro. The MW of PEG was 10KDa, and PEI was 2KDa. Its structure was identified by NMR, FT-IR and ...The work described the synthesis and evaluation of PEI-g-comb-PEG-transferrin as a potential system for gene therapy in vitro. The MW of PEG was 10KDa, and PEI was 2KDa. Its structure was identified by NMR, FT-IR and TGA spectroscopy. MTT assay found that at concentration up to 4000 n mol/L of the polymer, cell viability was over 85%. The bio-character of polymer/DNA complex was characterized by agarose gel electrophoresis, ethidium bromide exclusion and zeta-potential assay. The polymer could retardate DNA at N/P ratio 3.0-3.5 (mol/mol). The particle size of the polymer/DNA complex was less than 300 nm. Transfection efficiency of the complex was studied in COS7 and NT2 cell lines.展开更多
Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targe...Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targeting ability. Methods: The synthetic polypeptides CR16 for binding FGF receptors was conjugated to PEI and the characters of the polypeptides in-cluding DNA condensing and particle size were determined. Enhanced efficiency and the targeting specificity of the synthesized vector were investigated in vitro and in vivo. Results: The polypeptides were successfully coupled to PEI. The new vectors PEI-CR16 could efficiently condense pDNA into particles with around 200 nm diameter. The PEI-CR16/pDNA polyplexes showed significantly greater transgene activity than PEI/pDNA in FGF receptors positive tumor cells in vitro and in vivo gene transfer, while no difference was observed in FGF receptors negative tumor cells. The enhanced transfection efficiency of PEI-CR16 could be blocked by excess free polypeptides. Conclusion: The synthesized vector could improve the efficiency of gene transfer and targeting specificity in FGF receptors positive cells. The vector had good prospect for use in cancer gene therapy.展开更多
A new adsorbent was synthesized using polyethylenimine(PEI)on the carbon black to remove aspirin from an aqueous solution.In this study,adsorption performance of modified carbon black by polyethylenimine(PEI)on aspiri...A new adsorbent was synthesized using polyethylenimine(PEI)on the carbon black to remove aspirin from an aqueous solution.In this study,adsorption performance of modified carbon black by polyethylenimine(PEI)on aspirin was investigated.Batch adsorption studies were performed to evaluate the effects of contact time,pH solution,temperature,and initial concentration on the adsorption of aspirin.For this study,the carbon black obtained from the pyrolysis of tire waste was used as a precursor for low-cost adsorbents.The carbon black was treated by 1 M of hydrochloric acid solution to remove ash and sulphur content.Then,the treated carbon black was modified by impregnation with PEI in one to one weight ratio within 24 hours at 65°C and then cross linked with 1%(w/v)glutaraldehyde solution for one hour.The adsorption rate of aspirin by modified carbon black was rapid from 20 minutes to 60 minutes and reached equilibrium.Hence,the optimum contact time for this study is 60 minutes with 59.96%of aspirin removal and 29.98 mg/g adsorption capacity.The best performance for pH solution,temperature,and initial concentration was observed at pH 3(26.1 mg/g),30°C(26.9 mg/g)and 20 ppm(40.96 mg/g)respectively.展开更多
Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to inve...Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to investigate the effects on pharmaceutical characteristics and cell uptake PEI after a long-circulation modification with poly(ethylene glycol) (PEG). DFA or ODN reacted with PEI or PEI-PEG to form polyelectrolyte complexes. Surface characters of these complexes and the retardation of ODN by PEI and PEI-PEG were evaluated. The uptake rates of DFA/PEI and DFA/PEI-PEG complexes by MCF-7 cells were evaluated by flow cytometry. Confocal laser scanning microscopy was utilized to visualize the internalization of these complexes. ODN/PEI complex showed the dependence of their size and ξ potential on the N/P ratio. ODN/PEI-PEG complex were much less affected by N/P ratio and their size was around 30 100 nm. PEI and PEI-PEG retarded ODN even at N/P ratio as low as 4, and complete retardation was found at N/P ratio of 8. The uptake rate by MCF-7 cells was direct correlated to the DFA concentration and incubation time, and the uptake rate could exceed 99% under the selected condition. The results in this study showed that PEI self-assembly polyelectrolyte complex after stealth or long circulation modification may increase the ability as a gene vector to delivery genes into cells.展开更多
Aim: To study polyethylenimine (PEI)-mediated in vivo gene transfection into testis cells and preliminary functional research of spermatogenic cell-specific gene NYD-SP12 using this method. Methods: PEI/DNA comple...Aim: To study polyethylenimine (PEI)-mediated in vivo gene transfection into testis cells and preliminary functional research of spermatogenic cell-specific gene NYD-SP12 using this method. Methods: PEI/DNA complexes were introduced into the seminiferous tubules of mouse testes using intratesticular injection. Transfection efficiency and speciality were analyzed on the third day of transfection with fluorescent microscopy and hematoxylin staining. The long-lasting expression of the GFP-NYD-SP12 fusion protein and its subcelluar localization in spermatogenic cells at different stages were analyzed with fluorescent microscopy and propidium iodide staining. Results: With the mediation of PEI, the GFP-NYD-SP12 fusion gene was efficiently transferred and expressed in the germ cells (especially in primary spermatocytes). Transfection into Sertoli cells was not observed. The subcellular localization of the GFP-NYD-SP2 fusion protein showed dynamic shifts in spermatogenic cells at different stages during spermatogenesis. Conclusion: PEI can efficiently mediate gene transfer into spermatocytes. Thus, it might be useful for the functional research of spermatogenic-cell specific genes such as the NYD-SP12 gene. In our gtudy, the NYD-SP12 protein was visualized and was involved in the formation of acrosome during spermatogenesis. Our research will continue into the detailed function of NYD-SP12 in spermatocytes. (Asian J Androl 2006 Jan; 8: 53-59)展开更多
The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and po...The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.展开更多
A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects...A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC 50 =1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl 2 posed no acute toxicity but significantly stimulated their growth (107%-214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl 2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl 2 to RSBF cells; that there was a slight dose dependent response in the genotoxic effect of PEI but not NiCl 2; and that RAPD technique might provide a sensitive, non specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene vector in fish gene transfer and human gene therapy.展开更多
A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown th...A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury.We proposed that small interfering RNA targeting nischarin(Nis-si RNA) delivered by polyethyleneimine-alginate(PEIALG) nanoparticles promoted motor function recovery in rats with spinal cord injury.Direct microinjection of 5 μL PEI-ALG/Nis-si RNA into the spinal cord lesion area of spinal cord injury rats was performed.From day 7 after surgery,Basso,Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-si RNA group compared with the spinal cord injury group and PEI-ALG/Control-si RNA group.On day 21 after injection,hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-si RNA group.Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-si RNA group.These findings suggest that a complex of PEI-ALG nanoparticles and Nis-si RNA effectively suppresses nischarin expression,induces expression of growth-associated protein-43,and accelerates motor function recovery after spinal cord injury.展开更多
Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complex...Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complexes with different contents of PEI(5%,10%,20% and 40% relative to phosphatidyl choline in reaction system) were prepared.The physicochemical properties of Lipo/PEI complexes,as well as the influences of PEI content on the storage stability,cytotoxicity and transfection efficiency were investigated.The transmission electron microscopy(TEM) images showed that Lipo/PEI complexes had smaller size compared to pure Lipo.The zeta potential values decreased with the increasing content of PEI.After storaged for 3 months at 4 ℃,obvious aggregation was observed when the addition of PEI content was up to 20%.In vitro cytotoxicity assay showed that Lipo/PEI complexes had decreased cytotoxicity over pure PEI,while the cytotoxicity was enhanced as the PEI content increased.Importantly,the luciferase activity assay and confocal microscope observation revealed that Lipo/PEI complexes prepared with the lowest amount of PEI(Lipo/PEI-5%)possessed the highest transfection efficiency.Thus,these results suggest that feeding the appropriate content of PEI in Lipo/PEI complexes allows them to be excellent vehicle for gene delivery.展开更多
In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of d...In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of diethylstilbestrol. Compared with bare GCE, the peak current at the potential of 0.45 V is increased notably at PEI and PEI-nanogold modified electrode both by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This kind of electrode allows the detection of low concentration of diethylstilbestrol in the range of 0.03~12 mg/L by DPV measurement. Other optimizations for experimental conditions were also discussed in detail.展开更多
Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current effic...Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency(CE) and power efficiency(PE) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether(EEA).Little effect is found on the work function of the PEI interlayer rinsed by deionized water(DI), ethanol(EtOH), and EEA.On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable.展开更多
Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular w...Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.展开更多
文摘The work described the synthesis and evaluation of PEI-g-comb-PEG-transferrin as a potential system for gene therapy in vitro. The MW of PEG was 10KDa, and PEI was 2KDa. Its structure was identified by NMR, FT-IR and TGA spectroscopy. MTT assay found that at concentration up to 4000 n mol/L of the polymer, cell viability was over 85%. The bio-character of polymer/DNA complex was characterized by agarose gel electrophoresis, ethidium bromide exclusion and zeta-potential assay. The polymer could retardate DNA at N/P ratio 3.0-3.5 (mol/mol). The particle size of the polymer/DNA complex was less than 300 nm. Transfection efficiency of the complex was studied in COS7 and NT2 cell lines.
基金Project (Nos. 2001AA217071 and 2003AA216041) supported by the Hi-Tech Research and Development Program (863) of China
文摘Objective: To construct a novel kind of nonviral gene delivery vector based on polyethylenimine (PEI) conjugated with polypeptides derived from ligand FGF with high transfection efficiency and according to tumor targeting ability. Methods: The synthetic polypeptides CR16 for binding FGF receptors was conjugated to PEI and the characters of the polypeptides in-cluding DNA condensing and particle size were determined. Enhanced efficiency and the targeting specificity of the synthesized vector were investigated in vitro and in vivo. Results: The polypeptides were successfully coupled to PEI. The new vectors PEI-CR16 could efficiently condense pDNA into particles with around 200 nm diameter. The PEI-CR16/pDNA polyplexes showed significantly greater transgene activity than PEI/pDNA in FGF receptors positive tumor cells in vitro and in vivo gene transfer, while no difference was observed in FGF receptors negative tumor cells. The enhanced transfection efficiency of PEI-CR16 could be blocked by excess free polypeptides. Conclusion: The synthesized vector could improve the efficiency of gene transfer and targeting specificity in FGF receptors positive cells. The vector had good prospect for use in cancer gene therapy.
文摘A new adsorbent was synthesized using polyethylenimine(PEI)on the carbon black to remove aspirin from an aqueous solution.In this study,adsorption performance of modified carbon black by polyethylenimine(PEI)on aspirin was investigated.Batch adsorption studies were performed to evaluate the effects of contact time,pH solution,temperature,and initial concentration on the adsorption of aspirin.For this study,the carbon black obtained from the pyrolysis of tire waste was used as a precursor for low-cost adsorbents.The carbon black was treated by 1 M of hydrochloric acid solution to remove ash and sulphur content.Then,the treated carbon black was modified by impregnation with PEI in one to one weight ratio within 24 hours at 65°C and then cross linked with 1%(w/v)glutaraldehyde solution for one hour.The adsorption rate of aspirin by modified carbon black was rapid from 20 minutes to 60 minutes and reached equilibrium.Hence,the optimum contact time for this study is 60 minutes with 59.96%of aspirin removal and 29.98 mg/g adsorption capacity.The best performance for pH solution,temperature,and initial concentration was observed at pH 3(26.1 mg/g),30°C(26.9 mg/g)and 20 ppm(40.96 mg/g)respectively.
基金National Nature Science Foundation of China (Grant No.30772665)Beijing Nature Science Foundation (Grant No.7083111).
文摘Cationic polyethylenimine (PEI) with dextran fluorescein anionic (DFA) or oligodeoxynucleotide (ODN) could form polyelectrolyte complex by self-assembly as a gene delivery vector. This study was designed to investigate the effects on pharmaceutical characteristics and cell uptake PEI after a long-circulation modification with poly(ethylene glycol) (PEG). DFA or ODN reacted with PEI or PEI-PEG to form polyelectrolyte complexes. Surface characters of these complexes and the retardation of ODN by PEI and PEI-PEG were evaluated. The uptake rates of DFA/PEI and DFA/PEI-PEG complexes by MCF-7 cells were evaluated by flow cytometry. Confocal laser scanning microscopy was utilized to visualize the internalization of these complexes. ODN/PEI complex showed the dependence of their size and ξ potential on the N/P ratio. ODN/PEI-PEG complex were much less affected by N/P ratio and their size was around 30 100 nm. PEI and PEI-PEG retarded ODN even at N/P ratio as low as 4, and complete retardation was found at N/P ratio of 8. The uptake rate by MCF-7 cells was direct correlated to the DFA concentration and incubation time, and the uptake rate could exceed 99% under the selected condition. The results in this study showed that PEI self-assembly polyelectrolyte complex after stealth or long circulation modification may increase the ability as a gene vector to delivery genes into cells.
文摘Aim: To study polyethylenimine (PEI)-mediated in vivo gene transfection into testis cells and preliminary functional research of spermatogenic cell-specific gene NYD-SP12 using this method. Methods: PEI/DNA complexes were introduced into the seminiferous tubules of mouse testes using intratesticular injection. Transfection efficiency and speciality were analyzed on the third day of transfection with fluorescent microscopy and hematoxylin staining. The long-lasting expression of the GFP-NYD-SP12 fusion protein and its subcelluar localization in spermatogenic cells at different stages were analyzed with fluorescent microscopy and propidium iodide staining. Results: With the mediation of PEI, the GFP-NYD-SP12 fusion gene was efficiently transferred and expressed in the germ cells (especially in primary spermatocytes). Transfection into Sertoli cells was not observed. The subcellular localization of the GFP-NYD-SP2 fusion protein showed dynamic shifts in spermatogenic cells at different stages during spermatogenesis. Conclusion: PEI can efficiently mediate gene transfer into spermatocytes. Thus, it might be useful for the functional research of spermatogenic-cell specific genes such as the NYD-SP12 gene. In our gtudy, the NYD-SP12 protein was visualized and was involved in the formation of acrosome during spermatogenesis. Our research will continue into the detailed function of NYD-SP12 in spermatocytes. (Asian J Androl 2006 Jan; 8: 53-59)
基金a grant from the National Natural Sciences Foundation of China (No. 30670548).
文摘The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.
文摘A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC 50 =1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl 2 posed no acute toxicity but significantly stimulated their growth (107%-214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl 2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl 2 to RSBF cells; that there was a slight dose dependent response in the genotoxic effect of PEI but not NiCl 2; and that RAPD technique might provide a sensitive, non specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene vector in fish gene transfer and human gene therapy.
基金supported by the Natural Science Foundation of Zhejiang Province of China,No.LY15H250001 and LY14H090002the National Natural Science Foundation of China,No.81000535 and 81402872+1 种基金the Medical Science and Technology Project Foundation of Zhejiang Province of China,No.2014KYA166the Science and Technology Innovation Talents Development Plan Foundation for High School Students in Zhejiang Province of China,No.2014R401186
文摘A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury.We proposed that small interfering RNA targeting nischarin(Nis-si RNA) delivered by polyethyleneimine-alginate(PEIALG) nanoparticles promoted motor function recovery in rats with spinal cord injury.Direct microinjection of 5 μL PEI-ALG/Nis-si RNA into the spinal cord lesion area of spinal cord injury rats was performed.From day 7 after surgery,Basso,Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-si RNA group compared with the spinal cord injury group and PEI-ALG/Control-si RNA group.On day 21 after injection,hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-si RNA group.Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-si RNA group.These findings suggest that a complex of PEI-ALG nanoparticles and Nis-si RNA effectively suppresses nischarin expression,induces expression of growth-associated protein-43,and accelerates motor function recovery after spinal cord injury.
基金National Natural Science Foundations of China(Nos.31271028,31570984)Innovation Program of Shanghai Municipal Education Commission,China(No.13ZZ051)+2 种基金International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality,China(No.15540723400)Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LK1416)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Cationic liposome(Lipo) and polyethylenimine(PEI) are widely applied for nonviral gene transfection.In this study,in order to combine the favorable properties of Lipo and PEI systems for gene delivery,Lipo/PEI complexes with different contents of PEI(5%,10%,20% and 40% relative to phosphatidyl choline in reaction system) were prepared.The physicochemical properties of Lipo/PEI complexes,as well as the influences of PEI content on the storage stability,cytotoxicity and transfection efficiency were investigated.The transmission electron microscopy(TEM) images showed that Lipo/PEI complexes had smaller size compared to pure Lipo.The zeta potential values decreased with the increasing content of PEI.After storaged for 3 months at 4 ℃,obvious aggregation was observed when the addition of PEI content was up to 20%.In vitro cytotoxicity assay showed that Lipo/PEI complexes had decreased cytotoxicity over pure PEI,while the cytotoxicity was enhanced as the PEI content increased.Importantly,the luciferase activity assay and confocal microscope observation revealed that Lipo/PEI complexes prepared with the lowest amount of PEI(Lipo/PEI-5%)possessed the highest transfection efficiency.Thus,these results suggest that feeding the appropriate content of PEI in Lipo/PEI complexes allows them to be excellent vehicle for gene delivery.
文摘In this paper, a new method for the modification of glass carbon electrode (GCE) by polyethylenimine (PEI) and nano-gold (Au-colloid) was established to explore sensitive techniques for voltammetric determination of diethylstilbestrol. Compared with bare GCE, the peak current at the potential of 0.45 V is increased notably at PEI and PEI-nanogold modified electrode both by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This kind of electrode allows the detection of low concentration of diethylstilbestrol in the range of 0.03~12 mg/L by DPV measurement. Other optimizations for experimental conditions were also discussed in detail.
基金supported by the National Key Basic Research Project of China(Grant No.2015CB351901)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09020201)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2013206)the National Natural Science Foundation of China(Grant No.21402233)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2012631and BK20140387)
文摘Polyethylenimine(PEI) interlayer rinsing with different solvents for inverted organic light emitting diodes(OLEDs)is systematically studied in this paper. In comparison with the pristine one, the maximum current efficiency(CE) and power efficiency(PE) are enhanced by 21% and 22% for the device rinsing by ethylene glycol monomethyl ether(EEA).Little effect is found on the work function of the PEI interlayer rinsed by deionized water(DI), ethanol(EtOH), and EEA.On the other hand, the surface morphologies of PEI through different solvent treatments are quite different. Our results indicates that the surface morphology is the key to improving the device performance for IOLED as the work function of PEI keeps stable.
文摘Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.