This paper is devoted to developing first-order necessary,second-order necessary,and second-order sufficient optimality conditions for a multiobjective optimization problem whose order is induced by a finite product o...This paper is devoted to developing first-order necessary,second-order necessary,and second-order sufficient optimality conditions for a multiobjective optimization problem whose order is induced by a finite product of second-order cones(here named as Q-multiobjective optimization problem).For an abstract-constrained Q-multiobjective optimization problem,we derive two basic necessary optimality theorems for weak efficient solutions and a second-order sufficient optimality theorem for efficient solutions.For Q-multiobjective optimization problem with explicit constraints,we demonstrate first-order and second-order necessary optimality conditions under Robinson constraint qualification as well as second-order sufficient optimality conditions under upper second-order regularity for the explicit constraints.As applications,we obtain optimality conditions for polyhedral conic,second-order conic,and semi-definite conic Q-multiobjective optimization problems.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.11571059,11731013 and 91330206).
文摘This paper is devoted to developing first-order necessary,second-order necessary,and second-order sufficient optimality conditions for a multiobjective optimization problem whose order is induced by a finite product of second-order cones(here named as Q-multiobjective optimization problem).For an abstract-constrained Q-multiobjective optimization problem,we derive two basic necessary optimality theorems for weak efficient solutions and a second-order sufficient optimality theorem for efficient solutions.For Q-multiobjective optimization problem with explicit constraints,we demonstrate first-order and second-order necessary optimality conditions under Robinson constraint qualification as well as second-order sufficient optimality conditions under upper second-order regularity for the explicit constraints.As applications,we obtain optimality conditions for polyhedral conic,second-order conic,and semi-definite conic Q-multiobjective optimization problems.