期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pd micro-nanoparticles electrodeposited on graphene/polyimide membrane for electrocatalytic oxidation of formic acid 被引量:3
1
作者 张焱 王琴 +2 位作者 叶为春 李佳佳 王春明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2986-2993,共8页
A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microsc... A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst. 展开更多
关键词 Pd micro-nanoparticles graphene/polyimide membrane carboxyl carbon nanotubes/polyimide membrane electro catalytic oxidation formic acid electrochemical deposition
下载PDF
Mixed Matrix Membranes of Polysulfone/Polyimide Reinforced with Modified Zeolite Based Filler: Preparation, Properties and Application 被引量:1
2
作者 Sedra Tul Muntha Muhammad Siddiq +1 位作者 Ayesha Kausar Anum Khan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期65-77,共13页
In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity aga... In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria(Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria(Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy(SEM) and transmission electron microscopy(TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis(XRD) and Fourier transform infrared(FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes. 展开更多
关键词 Modified zeolite Polysulfone/polyimide blend membrane Mixed matrix membrane Thermal analysis Antibacterial activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部