Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-...Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.展开更多
A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility a...A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility and damping properties when the ratio of PU/EP is 80 to 20. The results show that chain-extender and higher molecular weight of PPG are able to improve the properties of compatibility, damping and thermal properties.展开更多
A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to st...A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to study the glass transition temperature (Tg), loss factor (tanδ) and activation energy (Ea) by using multiplexing frequency. The results show that the Ea at glassy relaxation process of modified system is about 70-80 kJ/mol higher than that of unmodified system, and the high modulus and good thermal properties are still maintained.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
Polybutylacrylate (PBA)/poly(methyl methacrylate) (PMMA) core-shell elastic particles (CSEP), whose rubbery core diameter ranged from 0.08 μm to 1.38μm, were synthesized by using conventional emulsion polymerization...Polybutylacrylate (PBA)/poly(methyl methacrylate) (PMMA) core-shell elastic particles (CSEP), whose rubbery core diameter ranged from 0.08 μm to 1.38μm, were synthesized by using conventional emulsion polymerization, multi-step emulsion polymerization, and soapless polymerization. Allyl methacylate (ALMA) and ethylene glycol dimethacrylate (EGDMA) were selected as crosslinking reagents for core polymerization. Methacrylic acid (MAA) was used as functional co-monomer with methyl methacrylate as shell component. The content of vinyl groups in PBA rubbery core increased with the amount of crosslinking reagents. The core-shell ratio affected great on the morphology of the complex particles. Furthermore, the amounts of carboxyl on the surface of core-shell particles, copolymerized with acrylic acid, were determined by potentiometric titration. Results showed that methylacrylic acid was distributed mostly on the surface of particles.展开更多
Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity...Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity.The researchers explored the relationship between the flexible chains of epoxy monomers and the thermal conductivity of the modified epoxy resins(MEP).The effect of flexible chain length on the introduction of rigid groups into the cross-linked structure of epoxy is worth investigating,which is of great significance for the improvement of thermal conductivity of polymers and related theories.We prepared a small molecule liquid crystal(SMLC)containing a long flexible chain via a simple synthesis reaction,and introduced rigid mesocrystalline units into the epoxy resin via a curing reaction.During high-temperature curing,the introduced mesocrystalline units underwent orientational stacking and were immobilized within the polymer.XRD and TGA tests showed that the ordering within the modified epoxy resin was increased,which improved the thermal conductivity of the epoxy resin.Crucially,during the above process,the flexible chains of SMLC provide space for the biphenyl groups to align and therefore affect the thermal conductivity of the MEP.Specifically,the MEP-Ⅵcured with SMLC-Ⅵcontaining six carbon atoms in the flexible chain has the highest thermal conductivity of 0.40W·m^(-1)·K^(-1),which is 125%of the thermal conductivity of SMLC-IV of 0.32 W·m^(-1)·K^(-1),111%of the thermal conductivity of SMLC-Ⅷof 0.36W·m^(-1)·K^(-1),and 182%of the thermal conductivity of pure epoxy of 0.22 W·m^(-1)·K^(-1).The introduction of appropriate length flexible chains for SMLC promotes the stacking of rigid groups within the resin while reducing the occurrence of chain folding.This study will provide new ideas for the enhancement of thermal conductivity of cross-linked polymeric materials.展开更多
A bisphenol A based epoxy was incorporated with a quadruply hydrogen bonded supramolecular polymer as a toughening agent to prepare a composite epoxy resin with higher impact resistance. The supramolecular polymer com...A bisphenol A based epoxy was incorporated with a quadruply hydrogen bonded supramolecular polymer as a toughening agent to prepare a composite epoxy resin with higher impact resistance. The supramolecular polymer comprising poly-(propylene glycol) bis(2-aminopropyl) ether chains and 2-ureido-4[1H]-pyrimidinone moieties(UPy) self-assembled into spherical domains with sizes of 300 nm to 600 nm in diameter by micro phase separation in bulk epoxy matrixes. A significant improvement of 300% in impact resistance of the supramolecular polymer incorporated epoxy resin was obtained when the content of supramolecular polymer was 10 wt%. Tensile tests showed that the mechanical properties of the modified epoxy resin containing the hydrogen-bonded supramolecular polymers are also improved compared with those of the neat epoxy resin.展开更多
Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle ...Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.展开更多
Epoxy acrylate (EA) resin, which originates from epoxides, has long been served as a photocurable coating and adhesive material owing to its double bonds. Specifically, alkaline-developable EA resins can be used as a ...Epoxy acrylate (EA) resin, which originates from epoxides, has long been served as a photocurable coating and adhesive material owing to its double bonds. Specifically, alkaline-developable EA resins can be used as a binder polymer in negative-tone photoresists. In this work, we synthesized a series of acidic polyester-type epoxy methacrylate resins, characterized the intermediates and products, and tested their performance as a binder polymer for the photolithographic micro-patterning of the pixel-defining layer on organic light-emitting diodes in comparison to a widely used commercial binder polymer. Copolymer-type binder polymer BP-2-2 was produced excellent patterning with no residue due to its high compatibility with the black mill base.展开更多
In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power system...In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power systems.In this study,Atmospheric Pressure Plasma Jet(APPJ)technology was used to deposit TiO_(2)on the surface of alumina/epoxy(Al_(2)O_(3)/EP)composites.The impact of deposition of TiO_(2)layer on the surface morphology and chemical composition of Al_(2)O_(3)/EP was studied using testing methods such as Scanning Electron Microscope,X-ray photoelectron spectroscopy,Fourier Transform Infrared Spectrometer,and Energy Dispersive Spectrometer.It was found that APPJ creates a dense,rough Ti-O layer on the Al_(2)O_(3)/EP surface,which bonds tightly with the substrate.The efficacy of APPJ was found to depend on processing time,with optimal results observed at 3 min,DC and AC flashover voltages increased by 29.6% and 15.7%,respectively.TiO_(2)layer enhances the conductivity of the resin and shallows trap levels.Through the synergistic effects of various factors,surface charges are efficiently dissipated and evenly distributed.This study not only reveals the physicochemical process of TiO_(2)deposition via APPJ but also integrates surface characteristics with electrical performance.The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.展开更多
The apparent kinetics and cure behavior of novel interpenetrating polymer networks(IPNs) based on cycloaliphatic epoxy resin(CER) and tri-functional acrylate have been investigated by means of differential scanning ca...The apparent kinetics and cure behavior of novel interpenetrating polymer networks(IPNs) based on cycloaliphatic epoxy resin(CER) and tri-functional acrylate have been investigated by means of differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FT-IR).The results of DSC measurements show that the curing reaction of the TMPTMA component is much earlier than that of the CER component,which can lead to the formation of the IPNs.In contrast to neat anhydride-CER system,the anhydri...展开更多
Rubbers have been well accepted for modifying brittle epoxies but rubber modified epoxies usually posses lowered tensile strength though enhanced ductility and fracture resistance. In this work, a polyethylene glycol ...Rubbers have been well accepted for modifying brittle epoxies but rubber modified epoxies usually posses lowered tensile strength though enhanced ductility and fracture resistance. In this work, a polyethylene glycol (PEG-4000) is used to modify diglycidyl ether of bisphenol A/methyltetrahydrophthalic anhydride system for enhancing cryogenic tensile strength, ductility and impact resistance. The results display that the cryogenic tensile strength, ductility (failure strain) and fracture resistance (impact strength) are all enhanced for the modified epoxy system at proper PEG contents. The maximum tensile strength (127.8 MPa) at the cryogenic temperature (77 K) with an improvement of 30.1% is observed for the modified system with the 15 wt% PEG content. The ductility and impact resistance at both room temperature and cryogenic temperature are all improved for the modified epoxy system with proper PEG-4000 contents. These observations are explained by the positron annihilation lifetime spectroscopy results and scanning electron microscopy results. Moreover, the glass transition temperature decreases slightly with increasing PEG content.展开更多
New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solu...New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solution of triethylamine hydrochloride successively. The second reaction needs no phase transfer catalyst to accelerate, since the product formed can act as a phase transfer catalyst. The prepolymer obtained contains both photocrosslinkable acrylate groups and hydrophilic quaternary ammonium salt groups. Optimum conditions for these reactions were studied. The photosensitivity of the prepolymer was also investigated. The effects of different photoinitiators, different crosslinkable diluent monomers and amine accelerator on the photosensitivity of the prepolymer were compared. The photoinitiator of hydrogen abstraction type is still effective without using amine or alcohol as accelerator, because the prepolymer contains a H beside the OH groups formed in the ring-opening reactions.展开更多
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve...Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.展开更多
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
文摘A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility and damping properties when the ratio of PU/EP is 80 to 20. The results show that chain-extender and higher molecular weight of PPG are able to improve the properties of compatibility, damping and thermal properties.
基金Project (0447053) supported by the Natural Science Foundation of Guangxi Province, China Project(50473060) supported by the National Natural Science Foundation of China Project ([2004]20) supported by the Department of Education of Gunangxi Province, China
文摘A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to study the glass transition temperature (Tg), loss factor (tanδ) and activation energy (Ea) by using multiplexing frequency. The results show that the Ea at glassy relaxation process of modified system is about 70-80 kJ/mol higher than that of unmodified system, and the high modulus and good thermal properties are still maintained.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
文摘Polybutylacrylate (PBA)/poly(methyl methacrylate) (PMMA) core-shell elastic particles (CSEP), whose rubbery core diameter ranged from 0.08 μm to 1.38μm, were synthesized by using conventional emulsion polymerization, multi-step emulsion polymerization, and soapless polymerization. Allyl methacylate (ALMA) and ethylene glycol dimethacrylate (EGDMA) were selected as crosslinking reagents for core polymerization. Methacrylic acid (MAA) was used as functional co-monomer with methyl methacrylate as shell component. The content of vinyl groups in PBA rubbery core increased with the amount of crosslinking reagents. The core-shell ratio affected great on the morphology of the complex particles. Furthermore, the amounts of carboxyl on the surface of core-shell particles, copolymerized with acrylic acid, were determined by potentiometric titration. Results showed that methylacrylic acid was distributed mostly on the surface of particles.
基金financially supported by the National Key R&D Program of China(No.2022YFB3808800)the National Science Foundation for Distinguished Young Scholars of China(No.51925403)+3 种基金the National Natural Science Foundation of China(Nos.52303102 and 22378309)Tianjin Research Innovation Project for Postgraduate Students(No.2022BKY060)Ningbo Science and Technology Innovation 2025 Major Special Project(No.2022Z112)Ningbo Natural Science Foundation(No.2022J016)。
文摘Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity.Currently,the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity.The researchers explored the relationship between the flexible chains of epoxy monomers and the thermal conductivity of the modified epoxy resins(MEP).The effect of flexible chain length on the introduction of rigid groups into the cross-linked structure of epoxy is worth investigating,which is of great significance for the improvement of thermal conductivity of polymers and related theories.We prepared a small molecule liquid crystal(SMLC)containing a long flexible chain via a simple synthesis reaction,and introduced rigid mesocrystalline units into the epoxy resin via a curing reaction.During high-temperature curing,the introduced mesocrystalline units underwent orientational stacking and were immobilized within the polymer.XRD and TGA tests showed that the ordering within the modified epoxy resin was increased,which improved the thermal conductivity of the epoxy resin.Crucially,during the above process,the flexible chains of SMLC provide space for the biphenyl groups to align and therefore affect the thermal conductivity of the MEP.Specifically,the MEP-Ⅵcured with SMLC-Ⅵcontaining six carbon atoms in the flexible chain has the highest thermal conductivity of 0.40W·m^(-1)·K^(-1),which is 125%of the thermal conductivity of SMLC-IV of 0.32 W·m^(-1)·K^(-1),111%of the thermal conductivity of SMLC-Ⅷof 0.36W·m^(-1)·K^(-1),and 182%of the thermal conductivity of pure epoxy of 0.22 W·m^(-1)·K^(-1).The introduction of appropriate length flexible chains for SMLC promotes the stacking of rigid groups within the resin while reducing the occurrence of chain folding.This study will provide new ideas for the enhancement of thermal conductivity of cross-linked polymeric materials.
文摘A bisphenol A based epoxy was incorporated with a quadruply hydrogen bonded supramolecular polymer as a toughening agent to prepare a composite epoxy resin with higher impact resistance. The supramolecular polymer comprising poly-(propylene glycol) bis(2-aminopropyl) ether chains and 2-ureido-4[1H]-pyrimidinone moieties(UPy) self-assembled into spherical domains with sizes of 300 nm to 600 nm in diameter by micro phase separation in bulk epoxy matrixes. A significant improvement of 300% in impact resistance of the supramolecular polymer incorporated epoxy resin was obtained when the content of supramolecular polymer was 10 wt%. Tensile tests showed that the mechanical properties of the modified epoxy resin containing the hydrogen-bonded supramolecular polymers are also improved compared with those of the neat epoxy resin.
基金The project is supported by the National Natural Science Foundation of China
文摘Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.
文摘Epoxy acrylate (EA) resin, which originates from epoxides, has long been served as a photocurable coating and adhesive material owing to its double bonds. Specifically, alkaline-developable EA resins can be used as a binder polymer in negative-tone photoresists. In this work, we synthesized a series of acidic polyester-type epoxy methacrylate resins, characterized the intermediates and products, and tested their performance as a binder polymer for the photolithographic micro-patterning of the pixel-defining layer on organic light-emitting diodes in comparison to a widely used commercial binder polymer. Copolymer-type binder polymer BP-2-2 was produced excellent patterning with no residue due to its high compatibility with the black mill base.
基金National Natural Science Foundation of China(Nos.52007065 and 52277147)the Fundamental Research Funds for the Central Universities(No.2022MS071)。
文摘In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power systems.In this study,Atmospheric Pressure Plasma Jet(APPJ)technology was used to deposit TiO_(2)on the surface of alumina/epoxy(Al_(2)O_(3)/EP)composites.The impact of deposition of TiO_(2)layer on the surface morphology and chemical composition of Al_(2)O_(3)/EP was studied using testing methods such as Scanning Electron Microscope,X-ray photoelectron spectroscopy,Fourier Transform Infrared Spectrometer,and Energy Dispersive Spectrometer.It was found that APPJ creates a dense,rough Ti-O layer on the Al_(2)O_(3)/EP surface,which bonds tightly with the substrate.The efficacy of APPJ was found to depend on processing time,with optimal results observed at 3 min,DC and AC flashover voltages increased by 29.6% and 15.7%,respectively.TiO_(2)layer enhances the conductivity of the resin and shallows trap levels.Through the synergistic effects of various factors,surface charges are efficiently dissipated and evenly distributed.This study not only reveals the physicochemical process of TiO_(2)deposition via APPJ but also integrates surface characteristics with electrical performance.The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.
基金supported by Shanghai Committee of Science Technology for Major Research Project of ShanghaiCity(No.05dz22303).
文摘The apparent kinetics and cure behavior of novel interpenetrating polymer networks(IPNs) based on cycloaliphatic epoxy resin(CER) and tri-functional acrylate have been investigated by means of differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FT-IR).The results of DSC measurements show that the curing reaction of the TMPTMA component is much earlier than that of the CER component,which can lead to the formation of the IPNs.In contrast to neat anhydride-CER system,the anhydri...
基金support of the National Natural Science Foundation of China(Nos. 51073169,10972216 and 11002141)
文摘Rubbers have been well accepted for modifying brittle epoxies but rubber modified epoxies usually posses lowered tensile strength though enhanced ductility and fracture resistance. In this work, a polyethylene glycol (PEG-4000) is used to modify diglycidyl ether of bisphenol A/methyltetrahydrophthalic anhydride system for enhancing cryogenic tensile strength, ductility and impact resistance. The results display that the cryogenic tensile strength, ductility (failure strain) and fracture resistance (impact strength) are all enhanced for the modified epoxy system at proper PEG contents. The maximum tensile strength (127.8 MPa) at the cryogenic temperature (77 K) with an improvement of 30.1% is observed for the modified system with the 15 wt% PEG content. The ductility and impact resistance at both room temperature and cryogenic temperature are all improved for the modified epoxy system with proper PEG-4000 contents. These observations are explained by the positron annihilation lifetime spectroscopy results and scanning electron microscopy results. Moreover, the glass transition temperature decreases slightly with increasing PEG content.
文摘New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solution of triethylamine hydrochloride successively. The second reaction needs no phase transfer catalyst to accelerate, since the product formed can act as a phase transfer catalyst. The prepolymer obtained contains both photocrosslinkable acrylate groups and hydrophilic quaternary ammonium salt groups. Optimum conditions for these reactions were studied. The photosensitivity of the prepolymer was also investigated. The effects of different photoinitiators, different crosslinkable diluent monomers and amine accelerator on the photosensitivity of the prepolymer were compared. The photoinitiator of hydrogen abstraction type is still effective without using amine or alcohol as accelerator, because the prepolymer contains a H beside the OH groups formed in the ring-opening reactions.
文摘Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.