The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion(HME).Carbamazepine(CBZ)was selected as model drug and combinations of Kollidon VA64(VA64),Soluplus...The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion(HME).Carbamazepine(CBZ)was selected as model drug and combinations of Kollidon VA64(VA64),Soluplus(SOL)and Eudragit EPO(EPO)were utilized as carriers.Preformulation was conducted to identify the suitability of polymer combinations based on solubility parameters,differential scanning calorimetry(DSC),hot stage microscopy and thermogravimetric analysis.Physicochemical properties of solid dispersions were determined by DSC,X-ray diffraction,fourier transform infrared spectroscopy,dissolution and accelerated stability testing.The results show that drug-polymer miscibility at temperatures below the melting point(Tm)of CBZ was improved by combining EPO with VA64 or SOL.With 30%drug loading in a solid dispersion in SOL:EPO(1:1,w/w),CBZ was mainly present in an amorphous form accompanied by a small amount of a microcrystalline form.The dissolution rate of the solid dispersion was significantly increased(approximately 90%within 5 min)compared to either the pure drug(approximately 85%within 60 min)or the corresponding physical mixture(approximately 80%within 60 min)before and after storage.The solid dispersion in SOL:EPO(1:1,w/w)was relatively stable at 401C/75%RH under CBZ tablet packaging conditions for at least 3 months.In conclusion,polymer combinations that improve drug-polymer miscibility at an HME processing temperature below the Tm of a drug appear to be beneficial in the preparation of solid dispersions containing thermally unstable drugs.展开更多
Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards study...Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards studying the effect of combination of a natural chitosan from an oyster shell of Mystilis edulis and HPMC (hydroxy propyl methyl cellulose) (spectracel 15 E) as polymer and tripolyphosphate as cross linking agent using wet gelation technique. The various polymer combination ratios for different batches were compared with a low molecular weight standard chitosan. The extracted chitosan - HPMC polymer combination ratios were chosen at ten levels: as batches B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 for 1:1, 1:2, 2:1, 1:0, 0:1, 3:1, 1:3, 5:1, and 1:5 and 1:1 having 450:450, 300:600, 600:300, 900:0, 0:900, 675:225, 225:675, 750:150, 150:750, 450:450 mg respectively, while the quantity of domperidone and tripolyphosphate remained constant. B 11 and B 12 were formulated with standard chitosan and HPMC. The percentage yield of the formulated microspheres was determined and then evaluated for flowability, drug entrapment efficiency, drug release and mechanism of drug release by Fickian diffusion. The best batches of the domperidone loaded microspheres produced from the combination polymer were compared with the standard chitosan. The highest yields of microspheres were given by batches B12, B11, B10, and B4 with values of 50.1 ± 0.1%, 49.6 ± 0.1%, 46.6 :± 0.1%, and 46.1 ± 0.0% respectively while the lowest yield were 23.3 ± 0.2% and 23.6 ± 0.2%. B5 and B6 and B9 did not yield any microsphere. The bulk density, tapped density, compressibility and Hausner's ratio of the microspheres showed good flowability and high percent compressibility. The drug entrapment efficiency showed that the entrapment ranged from 54.2 to 97.2, where the least entrapment was B4 (54.2 ± 0.1) and the highest B12 (97.2 ± 0.2). The polymer surface of the microspheres as observed by SEM (scanning electron microscopy) was heterogeneous and porous which offers enhanced bioadhesivity. The dissolution study was used to determine the percentage drug release which ranged from 12.1% to 68.9% after 5 hours. Batches 1, 2, 3, 4, 7, and I 1 follow zero order kinetics via Fickian diffusion. The results indicate that microspberes of domperidone could be successfully formulated with a natural chitosan either alone or in combination with HPMC for sustained delivery of domperidone. Furthermore, the concentration of the natural polymer and HPMC employed in the formulation need to be carefully selected to enable the production of microspheres with the desired sustained release properties.展开更多
OBJECTIVE:Local delivery of carmustine(BCNU)from biodegradablepolymers prolongs survival against experi-mental brain tumors.Moreover,paracrine administration of interleukin-2(IL-2)has been shown to elicit apotent anti...OBJECTIVE:Local delivery of carmustine(BCNU)from biodegradablepolymers prolongs survival against experi-mental brain tumors.Moreover,paracrine administration of interleukin-2(IL-2)has been shown to elicit apotent antitumor immune response and to improve survival in animal brain tumor models.We report the use of anovel polymeric microsphere delivery vehicle to release IL-2.We demonstrate both in vitro release of cytokinefrom the microspheres and histological evidence of the inflammatory response elicited by IL-2 released from themicrospheres in the rat brain.Thees microspheres are used to deliver IL-2,and biodegradable polymer wafers展开更多
文摘The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion(HME).Carbamazepine(CBZ)was selected as model drug and combinations of Kollidon VA64(VA64),Soluplus(SOL)and Eudragit EPO(EPO)were utilized as carriers.Preformulation was conducted to identify the suitability of polymer combinations based on solubility parameters,differential scanning calorimetry(DSC),hot stage microscopy and thermogravimetric analysis.Physicochemical properties of solid dispersions were determined by DSC,X-ray diffraction,fourier transform infrared spectroscopy,dissolution and accelerated stability testing.The results show that drug-polymer miscibility at temperatures below the melting point(Tm)of CBZ was improved by combining EPO with VA64 or SOL.With 30%drug loading in a solid dispersion in SOL:EPO(1:1,w/w),CBZ was mainly present in an amorphous form accompanied by a small amount of a microcrystalline form.The dissolution rate of the solid dispersion was significantly increased(approximately 90%within 5 min)compared to either the pure drug(approximately 85%within 60 min)or the corresponding physical mixture(approximately 80%within 60 min)before and after storage.The solid dispersion in SOL:EPO(1:1,w/w)was relatively stable at 401C/75%RH under CBZ tablet packaging conditions for at least 3 months.In conclusion,polymer combinations that improve drug-polymer miscibility at an HME processing temperature below the Tm of a drug appear to be beneficial in the preparation of solid dispersions containing thermally unstable drugs.
文摘Abstract: Commercially available domperidone -a D2 receptor antagonist- is an immediate release formulation which has never been formulated into microspheres for sustained release. The present work aims towards studying the effect of combination of a natural chitosan from an oyster shell of Mystilis edulis and HPMC (hydroxy propyl methyl cellulose) (spectracel 15 E) as polymer and tripolyphosphate as cross linking agent using wet gelation technique. The various polymer combination ratios for different batches were compared with a low molecular weight standard chitosan. The extracted chitosan - HPMC polymer combination ratios were chosen at ten levels: as batches B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 for 1:1, 1:2, 2:1, 1:0, 0:1, 3:1, 1:3, 5:1, and 1:5 and 1:1 having 450:450, 300:600, 600:300, 900:0, 0:900, 675:225, 225:675, 750:150, 150:750, 450:450 mg respectively, while the quantity of domperidone and tripolyphosphate remained constant. B 11 and B 12 were formulated with standard chitosan and HPMC. The percentage yield of the formulated microspheres was determined and then evaluated for flowability, drug entrapment efficiency, drug release and mechanism of drug release by Fickian diffusion. The best batches of the domperidone loaded microspheres produced from the combination polymer were compared with the standard chitosan. The highest yields of microspheres were given by batches B12, B11, B10, and B4 with values of 50.1 ± 0.1%, 49.6 ± 0.1%, 46.6 :± 0.1%, and 46.1 ± 0.0% respectively while the lowest yield were 23.3 ± 0.2% and 23.6 ± 0.2%. B5 and B6 and B9 did not yield any microsphere. The bulk density, tapped density, compressibility and Hausner's ratio of the microspheres showed good flowability and high percent compressibility. The drug entrapment efficiency showed that the entrapment ranged from 54.2 to 97.2, where the least entrapment was B4 (54.2 ± 0.1) and the highest B12 (97.2 ± 0.2). The polymer surface of the microspheres as observed by SEM (scanning electron microscopy) was heterogeneous and porous which offers enhanced bioadhesivity. The dissolution study was used to determine the percentage drug release which ranged from 12.1% to 68.9% after 5 hours. Batches 1, 2, 3, 4, 7, and I 1 follow zero order kinetics via Fickian diffusion. The results indicate that microspberes of domperidone could be successfully formulated with a natural chitosan either alone or in combination with HPMC for sustained delivery of domperidone. Furthermore, the concentration of the natural polymer and HPMC employed in the formulation need to be carefully selected to enable the production of microspheres with the desired sustained release properties.
文摘OBJECTIVE:Local delivery of carmustine(BCNU)from biodegradablepolymers prolongs survival against experi-mental brain tumors.Moreover,paracrine administration of interleukin-2(IL-2)has been shown to elicit apotent antitumor immune response and to improve survival in animal brain tumor models.We report the use of anovel polymeric microsphere delivery vehicle to release IL-2.We demonstrate both in vitro release of cytokinefrom the microspheres and histological evidence of the inflammatory response elicited by IL-2 released from themicrospheres in the rat brain.Thees microspheres are used to deliver IL-2,and biodegradable polymer wafers