In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in po...In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in polymer pipes and it is now very common in plumbing and other parts of the drinking water distribution system. For more than 50 years, Polymer & Elastomeric materials have been used ubiquitously in drinking water distribution systems. Polymer & Elastomeric materials have successfully been used in a variety of applications ranging from rubber gaskets, to valves, to hydrants, to fittings. Polymer & Elastomers that degrade more quickly than expected create service problems, make it difficult for utilities to cost efficient plan preventive maintenance programs, and negatively affect customer relations. This review paper gives an insight idea to a reader about the selection of proper polymer & elastomer and predicting its performance in chlorinated water. Also the mechanism of degradation of Polymer & elastomer in chlorine environment and some model of life expectancy of in-service of Polymer & elastomer in various conditions and parameter in chlorinated water were discussed.展开更多
A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composit...A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.展开更多
Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six...Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.展开更多
Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of s...Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.展开更多
For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maxim...For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maximum volume filling with solid polydisperse particles. It allows to predict the rheological and mechanical properties of the polymer compositions being developed now. In this paper, we present the first experimental study of the pole of the concurrent lines of the concentration dependence in the coordinates of the linear form. The pole validates the invariant value of the constant of the developed equation and allows the experimental determination of the maximum volume filling of polymer binders filled with separate fractions or polydisperse mixtures. The results of the study are recommended for use in developing new polymer composite materials.展开更多
In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform ben...In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform bending or folding,and versatile structural shapes.By endowing elastomeric polymers with conductivity,researchers have recently devoted extensive efforts toward developing high-performance flexible sensors based on elastomeric conductive layers and exploring their potential applications in diverse fields ranging from project manufacturing to daily life.This review reports the recent advancements in elastomeric polymers used to make conductive layers,as well as the relationships between elastomeric polymers and the performance and application of flexible sensors are comprehensively summarized.First,the principles and methods for using elastomeric polymers to construct conductive layers are provided.Then,the fundamental design,unique properties,and underlying mechanisms in different flexible sensors(pressure/strain,temperature,humidity)and their related applications are revealed.Finally,this review concludes with a perspective on the challenges and future directions of high-performance flexible sensors.展开更多
This review is focused on carbon nanotube(CNT)-elastomeric polymer nanocom-posites,which have attracted industrial and academic interest over the years due to their enhanced properties.Major factors notably CNT type,s...This review is focused on carbon nanotube(CNT)-elastomeric polymer nanocom-posites,which have attracted industrial and academic interest over the years due to their enhanced properties.Major factors notably CNT type,surface modifica-tion,dispersion of CNT,and processing techniques that affect the physical properties of CNT-elastomeric polymer nanocomposites are reviewed,and several key physical properties,including tensile,electrical,and thermal properties,were also included in this review.Some of the key challenges that undermine the effectiveness of CNTs and their composites with elastomeric polymers,and the potential applications of CNT-elastomeric composites are also captured.展开更多
文摘In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in polymer pipes and it is now very common in plumbing and other parts of the drinking water distribution system. For more than 50 years, Polymer & Elastomeric materials have been used ubiquitously in drinking water distribution systems. Polymer & Elastomeric materials have successfully been used in a variety of applications ranging from rubber gaskets, to valves, to hydrants, to fittings. Polymer & Elastomers that degrade more quickly than expected create service problems, make it difficult for utilities to cost efficient plan preventive maintenance programs, and negatively affect customer relations. This review paper gives an insight idea to a reader about the selection of proper polymer & elastomer and predicting its performance in chlorinated water. Also the mechanism of degradation of Polymer & elastomer in chlorine environment and some model of life expectancy of in-service of Polymer & elastomer in various conditions and parameter in chlorinated water were discussed.
基金Funded by the National Natural Science Foundation of China(No.50873071)the Teaching and Research Award Program for Outstanding Young Professors in Higher Education Institute,MOE,China
文摘A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.
基金This project was supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (Grant number: 29734144).
文摘Two unbridged metallocene catalysts, bis(2,4,7-trimethylindenyl)zirconium dichloride (met-I) and bis(2,4,6-trimethylindenyl)zirconium dichloride (met-II), which are different in the position of substituents on the six-membered ring of the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerization was studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis of microstructure determined by C-13-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm] isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-end model was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can be attributed to the existence of 'racemic-like' conformer in its system.
基金This project has been supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (grant number 29734144).
文摘Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.
文摘For the first time, this paper describes the concentration dependence of the relative dynamic viscosity coefficient of rubber suspensions and the initial viscoelastic modulus of 3D cross-linked elastomers on the maximum volume filling with solid polydisperse particles. It allows to predict the rheological and mechanical properties of the polymer compositions being developed now. In this paper, we present the first experimental study of the pole of the concurrent lines of the concentration dependence in the coordinates of the linear form. The pole validates the invariant value of the constant of the developed equation and allows the experimental determination of the maximum volume filling of polymer binders filled with separate fractions or polydisperse mixtures. The results of the study are recommended for use in developing new polymer composite materials.
基金State Key Program of National Natural Science Foundation of China,Grant/Award Number:52130303National Natural Science Foundation of China,Grant/Award Number:51773147。
文摘In the wave of the Internet era created by computer and communication technology,flexible sensors play an important role in accurately collecting information owing to their excellent flexibility,ductility,freeform bending or folding,and versatile structural shapes.By endowing elastomeric polymers with conductivity,researchers have recently devoted extensive efforts toward developing high-performance flexible sensors based on elastomeric conductive layers and exploring their potential applications in diverse fields ranging from project manufacturing to daily life.This review reports the recent advancements in elastomeric polymers used to make conductive layers,as well as the relationships between elastomeric polymers and the performance and application of flexible sensors are comprehensively summarized.First,the principles and methods for using elastomeric polymers to construct conductive layers are provided.Then,the fundamental design,unique properties,and underlying mechanisms in different flexible sensors(pressure/strain,temperature,humidity)and their related applications are revealed.Finally,this review concludes with a perspective on the challenges and future directions of high-performance flexible sensors.
基金This work was supported by both the BK 21 Plus and the research fund[grant number 20135010300700]from Korea Institute of Energy Technology Evaluation and Planning(KETEP).
文摘This review is focused on carbon nanotube(CNT)-elastomeric polymer nanocom-posites,which have attracted industrial and academic interest over the years due to their enhanced properties.Major factors notably CNT type,surface modifica-tion,dispersion of CNT,and processing techniques that affect the physical properties of CNT-elastomeric polymer nanocomposites are reviewed,and several key physical properties,including tensile,electrical,and thermal properties,were also included in this review.Some of the key challenges that undermine the effectiveness of CNTs and their composites with elastomeric polymers,and the potential applications of CNT-elastomeric composites are also captured.