期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
1
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
2
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte Solid polymer electrolyte High safety electrolyte Solid state electrolyte Solid state battery
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms
3
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor polymer electrolytes Ion transport mechanism Li-ion transport number
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
4
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell High-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery
5
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries
6
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes Lithium metal batteries
下载PDF
The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery 被引量:3
7
作者 Xueying Yang Jiaxiang Liu +5 位作者 Nanbiao Pei Zhiqiang Chen Ruiyang Li Lijun Fu Peng Zhang Jinbao Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期339-375,共37页
With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an e... With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface. 展开更多
关键词 Composite polymer electrolytes FILLERS Ionic conductivity Electrode-electrolyte interface
下载PDF
Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties 被引量:2
8
作者 Zongxi Lin Ouwei Sheng +7 位作者 Xiaohan Cai Dan Duan Ke Yue Jianwei Nai Yao Wang Tiefeng Liu Xinyong Tao Yujing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期358-378,I0009,共22页
All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic con... All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs,and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited.In this review,the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties.Firstly,we summarize the challenges faced by solid polymer electrolytes(SPEs)in ASSLMBs,such as the low roomtemperature ionic conductivity and the poor interfacial stability.Secondly,several typical improvement methods of polymer ASSLMBs are discussed,including composite SPEs,ultra-thin SPEs,SPEs surface modification and Li anode surface modification.Finally,we conclude the characterizations for correlating the microstructures and the properties of SPEs,with emphasis on the use of emerging advanced techniques(e.g.,cryo-transmission electron microscopy)for in-depth analyzing ASSLMBs.The influence of the microstructures on the properties is very important.Until now,it has been difficult for us to understand the microstructures of batteries.However,some recent studies have demonstrated that we have a better understanding of the microstructures of batteries.Then we suggest that in situ characterization,nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries'microstructures and promote the development of batteries.And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance. 展开更多
关键词 Lithium metal batteries Solid polymer electrolytes MICROSTRUCTURES PROPERTIES
下载PDF
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:1
9
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
Optimized CeO_(2) Nanowires with Rich Surface Oxygen Vacancies Enable Fast Li-Ion Conduction in Composite Polymer Electrolytes 被引量:1
10
作者 Lu Gao Nan Wu +7 位作者 Nanping Deng Zhenchao Li Jianxin Li Yong Che Bowen Cheng Weimin Kang Ruiping Liu Yutao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期218-223,共6页
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t... Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities. 展开更多
关键词 composite polymer electrolytes Gd-doped CeO_(2)nanowires Li-ion conduction oxygen vacancies surface interaction
下载PDF
High-Performance Quasi-Solid-State Pouch Cells Enabled by in situ Solidification of a Novel Polymer Electrolyte 被引量:1
11
作者 Qingwen Lu Changhong Wang +9 位作者 Danni Bao Hui Duan Feipeng Zhao Kieran Doyle-Davis Qiang Zhang Rennian Wang Shangqian Zhao Jiantao Wang Huan Huang Xueliang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期15-21,共7页
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr... Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety. 展开更多
关键词 high areal capacity high-energy-density pouch cells in situ solidification poly(ethylene glycol)diacrylate-based polymer electrolyte
下载PDF
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors
12
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 Gel polymer electrolyte UV cross-linking Energy density High voltage window
下载PDF
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
13
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
Electronegativity-Induced Single-Ion Conducting Polymer Electrolyte for Solid-State Lithium Batteries
14
作者 Tianyi Hou Yumin Qian +7 位作者 Dinggen Li Bo Xu Zhenyu Huang Xueting Liu Haonan Wang Bowen Jiang Henghui Xu Yunhui Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期40-48,共9页
The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the... The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the two longstanding issues of SPEs simultaneously.Electronegative lodine-containing groups introduced on polymer chains effectively attract Li^(+)ions,facilitate Li^(+)transport,and promote the dissociation of Li salts.Meanwhile,iodine is also favorable to alleviate the strong O-Li^(+)coordination through a Lewis acidbase interaction,further improving the ionic conductivity and t_(Li)^(+).As a proof of concept,an iodinated single-ion conducting polymer electrolyte(IPE)demonstrates a high ionic conductivity of 0.93 mS cm^(-1)and a high t_(Li)^(+)of 0.86 at 25℃,which is among the best results ever reported for SPEs.Moreover,symmetric Li/Li cells with IPE achieve a long-term stability over 2600 h through the in-situ formed LiF-rich interphase.As a result,Li-S battery with IPE maintains a high capacity of 623.7 mAh g^(-1)over 300 cycles with an average Coulombic efficiency of 99%.When matched with intercalation cathode chemistries,Li/IPE/LiFePO_(4)and Li/IPE/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)solid-state batteries also deliver high-capacity retentions of 95%and 97%at 0.2 C after 120 cycles,respectively. 展开更多
关键词 IODINE lithium polymer electrolytes single-ion conducting solid-state batteries
下载PDF
Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries
15
作者 Jinyun Zheng Wenjie Li +3 位作者 Xinxin Liu Jiawei Zhang Xiangming Feng Weihua Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期355-383,共29页
Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably th... Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed. 展开更多
关键词 cycling performance gel polymer electrolyte ion conduction SAFETY sodiumion battery
下载PDF
A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries
16
作者 Kai Chen Yuxue Sun +2 位作者 Xiaorong Zhang Jun Liu Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期106-113,共8页
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli... The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP. 展开更多
关键词 cross-linked network dynamic disulfide bonds lithium-ion batteries NONFLAMMABLE self-healing solid polymer electrolytes
下载PDF
High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery 被引量:10
17
作者 Jing Jie Yulong Liu +6 位作者 Lina Cong Bohao Zhang Wei Lu Xinming Zhang Jun Liu Haiming Xie Liqun Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期80-88,共9页
Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes sh... Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes show unsatisfied safety and interface compatibility due to excessive absorption of volatile and flammable liquid solvents.Herein,by using a safe solvent(N-methyl-2-pyrrolidone)with higher boiling(203℃)and flash points(95℃),we initiatively fabricate a flexible PVDF-HFP based gel polymer electrolyte.The obtained gel polymer electrolyte demonstrates a high ionic conductivity of 7.24×10^−4 S cm−1,an electrochemical window of 5.2 V,and a high lithium transference number of 0.57.As a result,the synthesized polymer electrolyte exhibits a capacity retention of 70%after 500 cycles at 0.5 C,and a discharge capacity of 86 mAh g−1 even at a high current rate of 10 C for LiFePO4 based Li metal batteries.Moreover,a stable Li plating/stripping for more than 500 h is achieved under 0.1 mAh at both room temperature and 70℃.Our results indicate that the PVDF-HFP polymer electrolyte is promising for manufacturing safe and high-performance Li metal polymer batteries. 展开更多
关键词 Gel polymer electrolyte N-METHYL-2-PYRROLIDONE Interface stability Li-ion conduction path
下载PDF
Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells 被引量:7
18
作者 Maryam Kiani Jie Zhang +5 位作者 Yan Luo Chunping Jiang Jinlong Fan Gang Wang Jinwei Chen Ruilin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1124-1139,共16页
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg... The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst. 展开更多
关键词 Non-noble metal electrocatalysts polymer electrolyte membrane fuel cells(PEMFCs) Oxygen reduction reaction(ORR) ELECTROCATALYSIS Stability
下载PDF
A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries 被引量:6
19
作者 Yan-Qiu Shen Fang-Lei Zeng +4 位作者 Xin-Yu Zhou An-bang Wang Wei-kun Wang Ning-Yi Yuan Jian-Ning Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期267-276,I0008,共11页
Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Her... Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries. 展开更多
关键词 Gel polymer electrolyte Organo-polysulfides Lithium dendrite Solid electrolyte interphase Lithium-sulfur battery
下载PDF
Research progress on gel polymer electrolytes for lithium-sulfur batteries 被引量:6
20
作者 Jie Qian Biyu Jin +3 位作者 Yuanyuan Li Xiaoli Zhan Yang Hou Qinghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期420-437,共18页
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced s... Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined. 展开更多
关键词 Lithium-sulfur batteries Gel polymer electrolytes Solid hosts Liquid solutions
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部