Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight la...Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.展开更多
The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface ...The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface of electrode in the process of electrochemical deposition enhanced the coordination interaction between pi-electrons of thiophene unit and the metal, which makes thiophene rings lie parallel to the surface of electrode, resulting in a highly ordered polymeric structure. Because of the large intra-chain transfer integrals, the transport of charge is believed to be principally along the conjugated chains, which is much greater than the inter-chain hopping. The specific electrical resistance across the polythiophene film thickness is more than 10(4) times than that along the surface plane of the film. In this paper we review the recent development of polymerization technique by low potential electrochemical method performed in our lab and several electrical devices in which the compact polythiophene films, such as anionic and cationic sieves, and laminate film junction of undoped polythiophene derivatives were used.展开更多
Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illuminat...Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illumination. The photosensitivity of the device is strongly modulated by gate voltage under various illuminations. When the device is in the subthreshold operating mode, a significant increase in its drain current is observed with a maximum photosensitivity of 1.7×10^3 at an illumination intensity of 1200 lx, and even with a relatively high photosensitivity of 611 at a low illumination intensity of 100 lx. However, when the device is in the on-state operating mode, the photosensitivity is very low: only 1.88 at an illumination intensity of 1200 lx for a gate voltage of -20 V and a drain voltage of -20 V. The results indicate that the devices could be used as photo-detectors or sensors in the range of visible light. The modulation mechanism of the photosensitivity in the PTFT is discussed in detail.展开更多
Polymer LB films containing photofuntional groups were prepared by the copolymerization of N-dodecylacrylamide (DDA), which has an excellent property to form a stable monolayer and LB multilayerswith photofunctional m...Polymer LB films containing photofuntional groups were prepared by the copolymerization of N-dodecylacrylamide (DDA), which has an excellent property to form a stable monolayer and LB multilayerswith photofunctional monomers. Tris(2, 2'-bipyridine) ruthenium complex, Ru(bpy)_3^(2+), one of the most well-known redox-active sensitizer, was incorporated into the DDA copolymer. The photogalvanic effect based onthe photoinduced electron transfer using the ruthenium complex in the polymer LB monolayer was discussed.展开更多
Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dew...Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.展开更多
The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on ...The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.展开更多
The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) o...The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.展开更多
The electromechanical behavior of poly(vinylidene fluoride-trifluoroethylene)[P(VDF -TrFE)]ferroelectric thin film was investigated using the three dimensional(3D) phase-field method. Various energetic contributions,i...The electromechanical behavior of poly(vinylidene fluoride-trifluoroethylene)[P(VDF -TrFE)]ferroelectric thin film was investigated using the three dimensional(3D) phase-field method. Various energetic contributions,including elastic,electrostatic,and domain wall energy were taken into account in the variational functional of the phase field model.Evolution of the microscopic domain structures of P(VDF-TrFE) polymer film was simulated.Effects of the in-plane residual stress,the film thickness and externally applied electric bias field on the electromechanical properties of the film were explored.The obtained numerical results showed that the macroscopic responses of the electric hysteresis loops are sensitive to the residual stress and electric bias field.It was also found that thickness has a great effect on the electric hysteresis loops and remanent polarization.展开更多
The original technologies of growing silica films, impregnated with 7-dehydrocholesterol (provitamin D3) on quartz substrates and free transparent films on the basis of polyvinyl alcohol and polyvinyl butyral have bee...The original technologies of growing silica films, impregnated with 7-dehydrocholesterol (provitamin D3) on quartz substrates and free transparent films on the basis of polyvinyl alcohol and polyvinyl butyral have been developed. Provitamin D photoisomerization in the films under UVB irradiation was investigated by UV absorption spectroscopy. Remarkable changes in the absorption spectrum of 7-DHC were observed in silica and polyvinyl alcohol films as com-pared with ethanol solution, only in polyvinyl butyral film the spectrum was very nearly, while the spectral kinetics of 7-DHC photoisomerization in all the films was different from ethanol. We suggest that several films have potential as UV dosimeters to measure accumulated ‘antirachitic’ UV dose in the same manner as erythemic UV dose is measured by commonly used polysulphone film.展开更多
In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer diele...In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.展开更多
Silver particulate thin films on softened polymer blends of Polystyrene (PS)/Poly(2-vinyl pyridine) (P2VP), PS/Poly(4-vinylpyridine) (P4VP), and Poly(vinylpyrollidone) (PVP)/P4VP at a rate of 0.4 nm/s held at a temper...Silver particulate thin films on softened polymer blends of Polystyrene (PS)/Poly(2-vinyl pyridine) (P2VP), PS/Poly(4-vinylpyridine) (P4VP), and Poly(vinylpyrollidone) (PVP)/P4VP at a rate of 0.4 nm/s held at a temperature of 457 K in vacuum of 8 × 10-6 Torr by evaporation are deposited. These silver films were characterized by their electrical behavior, optical properties and Scanning electron microscopy (SEM). Silver films deposited on softened PS, and PVP give rise to a very high room temperature resistance approaching that of the substrate resistance due to the formation of a highly agglomerated structure. On the other hand, silver films on softened P2VP and P4VP give rise to a room temperature resistance in the range of tens to a few hundred MΩ/ which is desirable for device applications. Silver films on the composites of PS/P2VP, PS/P4VP and PVP/P4VP show resistances at room temperature. The optical and plasmonic response of Ag nanoparticles onto thin layers of blends shows encapsulation of nanoparticles. The electrical properties and SEM of silver nanoparticles on the thin layers of polymer blends indicate the formation of much smaller, narrower dispersion and wide size distribution.展开更多
Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave ref...Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.展开更多
Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown fi...Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.展开更多
The 6-mercapto-1,3,5-triazine-2,4-dithiol monosodium(TTN) compound was used to fabricate an organic film on pure copper. The polymer plating process of TTN on pure copper in Na2CO3 aqueous solution and the growth mech...The 6-mercapto-1,3,5-triazine-2,4-dithiol monosodium(TTN) compound was used to fabricate an organic film on pure copper. The polymer plating process of TTN on pure copper in Na2CO3 aqueous solution and the growth mechanism of poly(6-mercapto-1,3,5-triazine-2,4-dithiol)(PTT) film were studied by means of cyclic voltammetry. The polymer plating under galvanostatic mode at 0.05 mA/cm2 was conducted to generate PTT film on pure copper in the same electrolyte with different polymer-plating time. The film mass was determined by electronic balance and the insoluble fraction in tetrahydrofuran(THF) Is tested. The performance of organic film formed on copper surface was investigated preliminarily by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS). It is found that a slight peak measured at 0 V vs SCE attributes to the oxidation of copper and generated Cu+ or/and Cu2+ to produce Cu-TTN complex,then a strong oxide peak is observed at 0.311 V vs SCE due to the polymerization of TTN for the increase of the film thickness. Electrochemical measurement results reveal that 10 min is an optimum polymer-plated time to obtain high quality film. The results of potentiodynamic polarization show that current density decreases from 1.85 μA/cm2 for bare copper to 0.168 μA/cm2 for polymer-plated copper while polymer-plated time is 10 min. The charge transfer resistances of bare copper and polymer-plated copper are 937 Ω·cm2 and 11.12 kΩ·cm2,respectively. The film capacitor for polymer-plated copper is as low as 1.82 μF·cm2. The EIS results confirm the results of potentiodynamic polarization and reveal that a homogenous and compact film is obtained by polymer plating technique.展开更多
A new kind of comblike copolymer film composed of acrylic acid-polyethylene glycol monomethyl ether acrylate copolymer(AA-PEGMA copolymer) was successfully synthesized to immobilize hemoglobin(Hb). FTIR, UV-Vis an...A new kind of comblike copolymer film composed of acrylic acid-polyethylene glycol monomethyl ether acrylate copolymer(AA-PEGMA copolymer) was successfully synthesized to immobilize hemoglobin(Hb). FTIR, UV-Vis and CD spectra suggest that Hb kept its original structure in the AA-PEGMA copolymer film without denaturation. A pair of well-defined, quasi-reversible cyclic voltammetric peaks at around –270 mV vs. saturated calomel electrode(SCE) for the Hb Fe(III)/Fe(II) redox couple was observed on the film-modified electrode in phos phate buffer solution(PBS, pH=7.0). The formal potential of Hb/AA-PEGMA copolymer film-modified electrode is linearly dependent on solution pH with a slope of –46.3 mV/pH, illustrating that one-proton transfer was accompa nied with each electron transfer. Furthermore, the modified electrode displayed electrocatalytic response to the reduc tion of H2O2 with a linear range of 3.5―126 μmol/L and a detection limit of 1.17 μmol/L. In conclusion, the AA-PEGMA copolymer film was proved to be an excellent matrix for the immobilization and electrochemistry of proteins.展开更多
It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or hetero...It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.展开更多
The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate...The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate) (PMMA) polymer was doped with the Phenol Red dye dissolved in a mixture of chloroform and little quantity of methanol, used as suitable solvent for both the dye and the polymer. The spectral absorption measurements of these films were carried out at different dye concentrations using UV-Vis double-beam spectrophotometer in the wavelength range 300 - 800 nm. The optical parameters of the prepared Phenol Red dye doped polymer films, absorption coefficient (α), extinction coefficient (κ), refractive index (n), optical and electrical conductivities (σ<sub>opt</sub> and σ<sub>elect</sub>), and optical energy band gap (E<sub>g</sub>), were determined. The results showed that the Phenol Red dye doped polymer film is a good candidate for photonic applications such as, solar cells, optical sensors, and other photonic devices.展开更多
The thermal induced topography change in a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been studied by using AFM. Regular lateral patterns over large areas were observ...The thermal induced topography change in a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been studied by using AFM. Regular lateral patterns over large areas were observed on the surface when the system was heated to a sufficiently high temperature. 2D-FFT analysis to the AFM images indicates that the patterns are isotropic and have well defined periodicities. The periodicities of the characteristic patterns are found to depend strongly on the annealing temperature. The study of the kinetics of the formation reveals that such a topography forms almost instantaneously once the critical temperature is reached. It is suggested that this wave-like surface morphology is driven by the thermal expansion coefficient mismatch of the different layers. This method for generating regular wave-like patterns could be used as a general method for patterning various organic materials into micro/nanostructures.展开更多
1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the unifo...1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the uniform films had a layer structure similar to the superlattice of organic multiple quantum wells. The electroluminescence (EL) devices fabricated from the doped polymer LB films emitted blue light. Compared with the casting films, the photoluminescence (PL) and EL spectra showed that the exciton energy shifts to higher and the half-width of the emission peak becomes narrower due to exciton confinement effect.展开更多
The investigation of electrochromic effect of corona-poled nonlinear optical polymer films is an effective method for the estimation of poling level and the selection of poling conditions. The poling electric field E_...The investigation of electrochromic effect of corona-poled nonlinear optical polymer films is an effective method for the estimation of poling level and the selection of poling conditions. The poling electric field E_p and orientational order parameter Φ, which are the important parameters to predict d_(33) of poled films, can be calculated by a simple operation from the number of red shift of charge transfer absorption band. The calculated results are in good agreement with the experimental data.展开更多
基金the financial support of NSERC(Discovery Grant RGPIN-2015-03985).
文摘Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.
文摘The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface of electrode in the process of electrochemical deposition enhanced the coordination interaction between pi-electrons of thiophene unit and the metal, which makes thiophene rings lie parallel to the surface of electrode, resulting in a highly ordered polymeric structure. Because of the large intra-chain transfer integrals, the transport of charge is believed to be principally along the conjugated chains, which is much greater than the inter-chain hopping. The specific electrical resistance across the polythiophene film thickness is more than 10(4) times than that along the surface plane of the film. In this paper we review the recent development of polymerization technique by low potential electrochemical method performed in our lab and several electrical devices in which the compact polythiophene films, such as anionic and cationic sieves, and laminate film junction of undoped polythiophene derivatives were used.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 61076113)the Natural Science Foundation of Guangdong Province,China (Grant No. 8451064101000257)the Research Grants Council (RGC) of Hong Kong Special Administrative Region (HKSAR),China (Grant No. HKU 7133/07E)
文摘Polymer thin-film transistors (PTFTs) based on poly(3-hexylthiophene) are fabricated by the spin-coating process, and their photo-sensing characteristics are investigated under steady-state visible-light illumination. The photosensitivity of the device is strongly modulated by gate voltage under various illuminations. When the device is in the subthreshold operating mode, a significant increase in its drain current is observed with a maximum photosensitivity of 1.7×10^3 at an illumination intensity of 1200 lx, and even with a relatively high photosensitivity of 611 at a low illumination intensity of 100 lx. However, when the device is in the on-state operating mode, the photosensitivity is very low: only 1.88 at an illumination intensity of 1200 lx for a gate voltage of -20 V and a drain voltage of -20 V. The results indicate that the devices could be used as photo-detectors or sensors in the range of visible light. The modulation mechanism of the photosensitivity in the PTFT is discussed in detail.
文摘Polymer LB films containing photofuntional groups were prepared by the copolymerization of N-dodecylacrylamide (DDA), which has an excellent property to form a stable monolayer and LB multilayerswith photofunctional monomers. Tris(2, 2'-bipyridine) ruthenium complex, Ru(bpy)_3^(2+), one of the most well-known redox-active sensitizer, was incorporated into the DDA copolymer. The photogalvanic effect based onthe photoinduced electron transfer using the ruthenium complex in the polymer LB monolayer was discussed.
基金Supported by the National Natural Science Foundation of China(Nos.20774036 50930001+1 种基金 20933001)the Program for New Century Excellent Talents in University of China and Fok Ying Tung Education Foundation(No.114018)
文摘Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.
基金financially supported by National Natural Science Foundation of China (No. 51401194)
文摘The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.
基金Supported by the National Natural Science Foundation of China (20976044 20736002)
文摘The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11072127, and 10832002)the National Basic Research Pro- gram of China(Grant No.2011CB610300)
文摘The electromechanical behavior of poly(vinylidene fluoride-trifluoroethylene)[P(VDF -TrFE)]ferroelectric thin film was investigated using the three dimensional(3D) phase-field method. Various energetic contributions,including elastic,electrostatic,and domain wall energy were taken into account in the variational functional of the phase field model.Evolution of the microscopic domain structures of P(VDF-TrFE) polymer film was simulated.Effects of the in-plane residual stress,the film thickness and externally applied electric bias field on the electromechanical properties of the film were explored.The obtained numerical results showed that the macroscopic responses of the electric hysteresis loops are sensitive to the residual stress and electric bias field.It was also found that thickness has a great effect on the electric hysteresis loops and remanent polarization.
文摘The original technologies of growing silica films, impregnated with 7-dehydrocholesterol (provitamin D3) on quartz substrates and free transparent films on the basis of polyvinyl alcohol and polyvinyl butyral have been developed. Provitamin D photoisomerization in the films under UVB irradiation was investigated by UV absorption spectroscopy. Remarkable changes in the absorption spectrum of 7-DHC were observed in silica and polyvinyl alcohol films as com-pared with ethanol solution, only in polyvinyl butyral film the spectrum was very nearly, while the spectral kinetics of 7-DHC photoisomerization in all the films was different from ethanol. We suggest that several films have potential as UV dosimeters to measure accumulated ‘antirachitic’ UV dose in the same manner as erythemic UV dose is measured by commonly used polysulphone film.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50707032 and 50437020)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-339)the State Key Laboratory of Controland Simulation of Power System and Generation Equipment in Tsinghua University (Grant No. SKLD09KZ05)
文摘In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.
文摘Silver particulate thin films on softened polymer blends of Polystyrene (PS)/Poly(2-vinyl pyridine) (P2VP), PS/Poly(4-vinylpyridine) (P4VP), and Poly(vinylpyrollidone) (PVP)/P4VP at a rate of 0.4 nm/s held at a temperature of 457 K in vacuum of 8 × 10-6 Torr by evaporation are deposited. These silver films were characterized by their electrical behavior, optical properties and Scanning electron microscopy (SEM). Silver films deposited on softened PS, and PVP give rise to a very high room temperature resistance approaching that of the substrate resistance due to the formation of a highly agglomerated structure. On the other hand, silver films on softened P2VP and P4VP give rise to a room temperature resistance in the range of tens to a few hundred MΩ/ which is desirable for device applications. Silver films on the composites of PS/P2VP, PS/P4VP and PVP/P4VP show resistances at room temperature. The optical and plasmonic response of Ag nanoparticles onto thin layers of blends shows encapsulation of nanoparticles. The electrical properties and SEM of silver nanoparticles on the thin layers of polymer blends indicate the formation of much smaller, narrower dispersion and wide size distribution.
文摘Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60976061 and 11028409)
文摘Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.
基金Project(50673028) supported by the National Natural Science Foundation of Chinaproject(04020090) supported by Guangdong Natural Science Foundation of Guangdong Province, ChinaProject(2005Z3-I0011) supported by Guangzhou International Science and Technology Cooperation Project
文摘The 6-mercapto-1,3,5-triazine-2,4-dithiol monosodium(TTN) compound was used to fabricate an organic film on pure copper. The polymer plating process of TTN on pure copper in Na2CO3 aqueous solution and the growth mechanism of poly(6-mercapto-1,3,5-triazine-2,4-dithiol)(PTT) film were studied by means of cyclic voltammetry. The polymer plating under galvanostatic mode at 0.05 mA/cm2 was conducted to generate PTT film on pure copper in the same electrolyte with different polymer-plating time. The film mass was determined by electronic balance and the insoluble fraction in tetrahydrofuran(THF) Is tested. The performance of organic film formed on copper surface was investigated preliminarily by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS). It is found that a slight peak measured at 0 V vs SCE attributes to the oxidation of copper and generated Cu+ or/and Cu2+ to produce Cu-TTN complex,then a strong oxide peak is observed at 0.311 V vs SCE due to the polymerization of TTN for the increase of the film thickness. Electrochemical measurement results reveal that 10 min is an optimum polymer-plated time to obtain high quality film. The results of potentiodynamic polarization show that current density decreases from 1.85 μA/cm2 for bare copper to 0.168 μA/cm2 for polymer-plated copper while polymer-plated time is 10 min. The charge transfer resistances of bare copper and polymer-plated copper are 937 Ω·cm2 and 11.12 kΩ·cm2,respectively. The film capacitor for polymer-plated copper is as low as 1.82 μF·cm2. The EIS results confirm the results of potentiodynamic polarization and reveal that a homogenous and compact film is obtained by polymer plating technique.
基金Supported by the National Natural Science Foundation of China(No.21076065)
文摘A new kind of comblike copolymer film composed of acrylic acid-polyethylene glycol monomethyl ether acrylate copolymer(AA-PEGMA copolymer) was successfully synthesized to immobilize hemoglobin(Hb). FTIR, UV-Vis and CD spectra suggest that Hb kept its original structure in the AA-PEGMA copolymer film without denaturation. A pair of well-defined, quasi-reversible cyclic voltammetric peaks at around –270 mV vs. saturated calomel electrode(SCE) for the Hb Fe(III)/Fe(II) redox couple was observed on the film-modified electrode in phos phate buffer solution(PBS, pH=7.0). The formal potential of Hb/AA-PEGMA copolymer film-modified electrode is linearly dependent on solution pH with a slope of –46.3 mV/pH, illustrating that one-proton transfer was accompa nied with each electron transfer. Furthermore, the modified electrode displayed electrocatalytic response to the reduc tion of H2O2 with a linear range of 3.5―126 μmol/L and a detection limit of 1.17 μmol/L. In conclusion, the AA-PEGMA copolymer film was proved to be an excellent matrix for the immobilization and electrochemistry of proteins.
基金This work was supported by the Institute of Nano Science and Technology and the Hong Kong University of Science and Technology through the Postdoctoral Matching Fund.
文摘It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.
文摘The optical properties of the pure polymer film and polymer films doped with Phenol Red dye at different concentrations were investigated. The films were prepared using the casting technique. Poly (methyl-methacrylate) (PMMA) polymer was doped with the Phenol Red dye dissolved in a mixture of chloroform and little quantity of methanol, used as suitable solvent for both the dye and the polymer. The spectral absorption measurements of these films were carried out at different dye concentrations using UV-Vis double-beam spectrophotometer in the wavelength range 300 - 800 nm. The optical parameters of the prepared Phenol Red dye doped polymer films, absorption coefficient (α), extinction coefficient (κ), refractive index (n), optical and electrical conductivities (σ<sub>opt</sub> and σ<sub>elect</sub>), and optical energy band gap (E<sub>g</sub>), were determined. The results showed that the Phenol Red dye doped polymer film is a good candidate for photonic applications such as, solar cells, optical sensors, and other photonic devices.
文摘The thermal induced topography change in a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been studied by using AFM. Regular lateral patterns over large areas were observed on the surface when the system was heated to a sufficiently high temperature. 2D-FFT analysis to the AFM images indicates that the patterns are isotropic and have well defined periodicities. The periodicities of the characteristic patterns are found to depend strongly on the annealing temperature. The study of the kinetics of the formation reveals that such a topography forms almost instantaneously once the critical temperature is reached. It is suggested that this wave-like surface morphology is driven by the thermal expansion coefficient mismatch of the different layers. This method for generating regular wave-like patterns could be used as a general method for patterning various organic materials into micro/nanostructures.
基金This Project is financially supported by the National Natural Science Foundation of China
文摘1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) was successfully introduced into the polymer multilayer films by means of Langmuir-Blodgett (LB) technique. Results of UV-VIS spectra and X-ray diffraction showed that the uniform films had a layer structure similar to the superlattice of organic multiple quantum wells. The electroluminescence (EL) devices fabricated from the doped polymer LB films emitted blue light. Compared with the casting films, the photoluminescence (PL) and EL spectra showed that the exciton energy shifts to higher and the half-width of the emission peak becomes narrower due to exciton confinement effect.
文摘The investigation of electrochromic effect of corona-poled nonlinear optical polymer films is an effective method for the estimation of poling level and the selection of poling conditions. The poling electric field E_p and orientational order parameter Φ, which are the important parameters to predict d_(33) of poled films, can be calculated by a simple operation from the number of red shift of charge transfer absorption band. The calculated results are in good agreement with the experimental data.