The influence of different modification methods on the surface properties of indium-tin-oxide (ITO) electrodes were investigated by measurements of chemical composition,surface roughness,sheet resistance,contact angle...The influence of different modification methods on the surface properties of indium-tin-oxide (ITO) electrodes were investigated by measurements of chemical composition,surface roughness,sheet resistance,contact angle and surface free energy.Experimental results demonstrate that oxygen plasma treatment more effectively optimizes the surface properties of ITO electrodes compared with the other treatments.Furthermore,the polymer light-emitting electrochemical cells (PLECs) with the differently treated ITO substrates as device electrodes were fabricated and characterized.It is found that oxygen plasma treatment on the ITO electrode enhances injection current,luminance and efficiency,thereby improves the device characteristics of the PLECs.展开更多
Polymer light-emitting electrochemical cells (PLECs) employ a thin layer of a luminescent conjugated polymer admixed with an ionic source and an ionic conductor for the in-situ formation of p-i-n junction and subseque...Polymer light-emitting electrochemical cells (PLECs) employ a thin layer of a luminescent conjugated polymer admixed with an ionic source and an ionic conductor for the in-situ formation of p-i-n junction and subsequent efficient injections of both electrons and holes.The junction formation enables the use of air-stable conductors as the cathode and a relatively thick emissive polymer layer that is more compatible with low-cost solution-based processes.This paper overviews the operation mechanism of the PLECs,the properties and drawbacks of the devices.The employment of crosslinkable ionic conductors to stabilize the p-i-n junction is reviewed.The resulting static junction electroluminesces light at high brightness,high efficiency,and prolonged lifetime.Silver paste and carbon nanotubes can be used as the cathode,thus,PLECs were fabricated by lamination.Using single wall carbon nanotubes coated elastic substrate as both anode and cathode,the PLECs can be made highly stretchable.展开更多
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c...An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.展开更多
Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we deve...Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm.展开更多
In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and na...In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6- 6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.展开更多
Light-emitting electrochemical cells(LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transp...Light-emitting electrochemical cells(LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transport polymer,and a compatible salt.The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance.The LEC junction,however,is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC.In this paper,we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques.Planar LECs with an interelectrode spacing of 560μm have been fabricated,activated,frozen and scanned using a focused laser beam.The optical-beam-induced-current(OBIC)and photoluminescence(PL) data have been recorded as a function of beam location.The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.展开更多
Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladium- catalyzed Suzuki coupling reaction. The polymer is purified carefully by a simple chemical procedure. ...Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladium- catalyzed Suzuki coupling reaction. The polymer is purified carefully by a simple chemical procedure. The inductively coupled plasma (ICP) test shows palladium-catalyst in the polymer can be removed by this procedure. The thermal properties, electrochemical properties, UV-Vis absorption properties, photoluminescence properties and electroluminescent properties of the polymer without (EO-PF1) or with purification (EO-PF2) are studied. EO-PF2 shows better PL CIE coordinates in THF solutions as blue light-emitting materials and better photoluminescence stability in thin solid films. Polymer light emitting diodes and electrochemical cells based on EO-PF2 exhibit somewhat improved optoelectronic performance than control devices of EO-PF 1.展开更多
Light-emitting electrochemical cells(LECs)can be fabricated with cost-efficient printing and coating methods,but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-sy...Light-emitting electrochemical cells(LECs)can be fabricated with cost-efficient printing and coating methods,but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-synthesize conjugated polymer.Here,we address this issue through the pioneering employment of metal-free and facile-to-synthesize carbon nanodots(CNDs)as the emitter in functional LEC devices.Circular-shaped(average diameter=4.4 nm)and hydrophilic CNDs,which exhibit narrow cyan photoluminescence(peak=485 nm,full width at half maximum=30 nm)with a high quantum yield of 77%in dilute ethanol solution,were synthesized with a catalyst-free,one-step solvothermal process using low-cost and benign phloroglucinol as the sole starting material.The propensity of the planar CNDs to form emission-quenching aggregates in the solid state was inhibited by the inclusion of a compatible 2,7-bis(diphenylphosphoryl)-9,9’-spirobifluorene host compound,and we demonstrate that such pristine host-guest CND-LECs turn on to a peak luminance of 118 cd·m^(−2)within 5 s during constant current-density driving at 77 mA·cm^(−2).展开更多
A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was ...A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was coated on the electrode,therefore the MFC was cheaper and possessed good durability with high performance.The effect of roughness,K3Fe(CN)6 concentration and sprayed air on the performance of the constructed MFC was investigated.Results showed that the roughness of electrode can significantly affect the performance of MFC.The power density of MFC increased by 1.56 times owing to the arithmetic mean roughness which has increased by 1.41 times.With an increasing K3Fe(CN)6 concentration,the performance of MFC also improves.The MFC with K3Fe(CN)6 only(30 mM)showed the highest power density of 1260 mW/m2,which is by 21.4 times and 1.3 times higher than those of MFCs with spraying air only(59 mW/m2)and with K3Fe(CN)6+air(1005 mW/m2),respectively.This showed that the appropriate concentration of K3Fe(CN)6 can significantly improve the power density,while the air has a negative effect when it is sprayed onto K3Fe(CN)6 catholyte.A coulombic efficiency of 34.2%and an energy efficiency of 13.3%with a COD degradation rate of 73.5%were achieved with MFC using K3Fe(CN)6 only.The overpotentials of MFC were also calculated.It can be seen that both theηohmic andηconcentration were very low as compared to theηactivation,and theηconcentration can be ignored because its effect was less than 3 mV.The theoretical calculation suggested that with an increasing conversion rate of K3Fe(CN)6,the cathode potential decreased and reached 0.31 V at a conversion rate of 0.99.While the anode behaves differently for constant pH and changeable pH as the reaction progresses,which reveals that the buffer solution and removal of protons play an important role in maintaining the anode potential.展开更多
Using a rigid azo ligand 4-[(8-hydroxy-5-quinolinyl)azo]-benzoic acid(H2 L),a new supramolecular compound [Zn(L)(H2O)2]n(1) has been solvothermally synthesized and structurally characterized by X-ray single-...Using a rigid azo ligand 4-[(8-hydroxy-5-quinolinyl)azo]-benzoic acid(H2 L),a new supramolecular compound [Zn(L)(H2O)2]n(1) has been solvothermally synthesized and structurally characterized by X-ray single-crystal diffraction,infrared spectrum,elemental analysis,power X-ray diffraction and thermal analysis.Compound 1 crystallizes in monoclinic,space group C2/c with a = 30.372(8),b = 11.415(3),c = 9.248(3) A,β = 106.94(3)o,V = 3067.20(15)A3,C(16)H(13)N3O5Zn,Mr = 392.66,Z = 8,Dc = 1.701 Mg/m^3; F(000) = 1600,μ = 1.636 mm^-1,reflections collected:7290,reflections unique:2735,R(int)= 0.0282,R = 0.0351,wR(all data) = 0.0919,GOOF on F^2 = 1.036.Compound 1 exhibits a one-dimensional(1 D) zig-zag chain structure connected into a three-dimensional(3D) supramolecular network through hydrogen bonding interactions.Fluorescent property and electrochemical property were detected on compound 1.展开更多
Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD, FTIR, DSC and AC impedance spec...Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD, FTIR, DSC and AC impedance spectroscopic analysis. The amorphous nature of the polymer electrolyte films has been confirmed by XRD. The complex formation between PVA and Mg salt has been confirmed by FTIR. The glass transition temperature decreases with increasing the Mg salt concentration. The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K, and the temperature dependence seems to obey the Arrhenius behavior. Transport number measurements show that the charge transport is mainly due to ions. Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(12 + C + electrolyte) has been fabricated. The discharge characteristics of the cell were studied for a constant load of 100 kΩ.展开更多
文摘The influence of different modification methods on the surface properties of indium-tin-oxide (ITO) electrodes were investigated by measurements of chemical composition,surface roughness,sheet resistance,contact angle and surface free energy.Experimental results demonstrate that oxygen plasma treatment more effectively optimizes the surface properties of ITO electrodes compared with the other treatments.Furthermore,the polymer light-emitting electrochemical cells (PLECs) with the differently treated ITO substrates as device electrodes were fabricated and characterized.It is found that oxygen plasma treatment on the ITO electrode enhances injection current,luminance and efficiency,thereby improves the device characteristics of the PLECs.
基金supported by the National Science Foundation (ECCS1028412)
文摘Polymer light-emitting electrochemical cells (PLECs) employ a thin layer of a luminescent conjugated polymer admixed with an ionic source and an ionic conductor for the in-situ formation of p-i-n junction and subsequent efficient injections of both electrons and holes.The junction formation enables the use of air-stable conductors as the cathode and a relatively thick emissive polymer layer that is more compatible with low-cost solution-based processes.This paper overviews the operation mechanism of the PLECs,the properties and drawbacks of the devices.The employment of crosslinkable ionic conductors to stabilize the p-i-n junction is reviewed.The resulting static junction electroluminesces light at high brightness,high efficiency,and prolonged lifetime.Silver paste and carbon nanotubes can be used as the cathode,thus,PLECs were fabricated by lamination.Using single wall carbon nanotubes coated elastic substrate as both anode and cathode,the PLECs can be made highly stretchable.
文摘An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.
基金M.Baeva,A.Vorobyov,V.Neplokh acknowledge the Russian Science Foundation No.22-79-10286(https://rscf.ru/project/22-79-10286/)for supporting silicon substrate processing.D.Gets,APolushkin and S.Makarov acknowledge the Ministry of Science and Higher Education of the Russian Federation(Project 075-15-2021-589)for supporting perovskite synthesisA.G.Nasibulin and D.V.Krasnikov acknowledge the Russian Science Foundation(grant No.20-73-10256)for supporting synthesis of SWCNTs.
文摘Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm.
文摘In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6- 6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.
基金supported by the Natural Sciences and Engineering Research Council of Canada.Faleh AlTal is supported by an Ontario Trillium Fellowship
文摘Light-emitting electrochemical cells(LECs) are organic photonic devices based on a mixed electronic and ionic conductor.The active layer of a polymer-based LEC consists of a luminescent polymer,an ion-solvating/transport polymer,and a compatible salt.The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance.The LEC junction,however,is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC.In this paper,we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques.Planar LECs with an interelectrode spacing of 560μm have been fabricated,activated,frozen and scanned using a focused laser beam.The optical-beam-induced-current(OBIC)and photoluminescence(PL) data have been recorded as a function of beam location.The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.
基金supported by the National Natural Science Foundation of China(No.50903078)Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers)(No.20090132120017)+1 种基金Promotive research fund for excellent young and middle-aged scientisits of Shandong Province(No.BS2009CL036)the Fundamental Research Funds for the Central Universities(No.201113045)
文摘Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladium- catalyzed Suzuki coupling reaction. The polymer is purified carefully by a simple chemical procedure. The inductively coupled plasma (ICP) test shows palladium-catalyst in the polymer can be removed by this procedure. The thermal properties, electrochemical properties, UV-Vis absorption properties, photoluminescence properties and electroluminescent properties of the polymer without (EO-PF1) or with purification (EO-PF2) are studied. EO-PF2 shows better PL CIE coordinates in THF solutions as blue light-emitting materials and better photoluminescence stability in thin solid films. Polymer light emitting diodes and electrochemical cells based on EO-PF2 exhibit somewhat improved optoelectronic performance than control devices of EO-PF 1.
基金support from J.C.Kempes Minnes Stipendiefond(No.SMK-1849.1)the Swedish Energy Agency(Nos.45419-1,46523-1,and 50779-1)+2 种基金the Swedish Research Council(Nos.2017-04380,2017-04862,2018-03937,and 2019-02345)the Swedish Foundation for Strategic Research,Stiftelsen Olle Engkvist Byggmästare(Nos.186-0637 and 193-0578)Bertil&Britt Svenssons stiftelse för belysningsteknik,the Swedish Foundation for International Cooperation in Research and Higher Education via an Initiation Grant for Internationalization(No.2019-8553)。
文摘Light-emitting electrochemical cells(LECs)can be fabricated with cost-efficient printing and coating methods,but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-synthesize conjugated polymer.Here,we address this issue through the pioneering employment of metal-free and facile-to-synthesize carbon nanodots(CNDs)as the emitter in functional LEC devices.Circular-shaped(average diameter=4.4 nm)and hydrophilic CNDs,which exhibit narrow cyan photoluminescence(peak=485 nm,full width at half maximum=30 nm)with a high quantum yield of 77%in dilute ethanol solution,were synthesized with a catalyst-free,one-step solvothermal process using low-cost and benign phloroglucinol as the sole starting material.The propensity of the planar CNDs to form emission-quenching aggregates in the solid state was inhibited by the inclusion of a compatible 2,7-bis(diphenylphosphoryl)-9,9’-spirobifluorene host compound,and we demonstrate that such pristine host-guest CND-LECs turn on to a peak luminance of 118 cd·m^(−2)within 5 s during constant current-density driving at 77 mA·cm^(−2).
基金The authors would like to thank the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung),BMBF,Germany,for funding parts of this study under the contract No.02WER1317D.
文摘A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was coated on the electrode,therefore the MFC was cheaper and possessed good durability with high performance.The effect of roughness,K3Fe(CN)6 concentration and sprayed air on the performance of the constructed MFC was investigated.Results showed that the roughness of electrode can significantly affect the performance of MFC.The power density of MFC increased by 1.56 times owing to the arithmetic mean roughness which has increased by 1.41 times.With an increasing K3Fe(CN)6 concentration,the performance of MFC also improves.The MFC with K3Fe(CN)6 only(30 mM)showed the highest power density of 1260 mW/m2,which is by 21.4 times and 1.3 times higher than those of MFCs with spraying air only(59 mW/m2)and with K3Fe(CN)6+air(1005 mW/m2),respectively.This showed that the appropriate concentration of K3Fe(CN)6 can significantly improve the power density,while the air has a negative effect when it is sprayed onto K3Fe(CN)6 catholyte.A coulombic efficiency of 34.2%and an energy efficiency of 13.3%with a COD degradation rate of 73.5%were achieved with MFC using K3Fe(CN)6 only.The overpotentials of MFC were also calculated.It can be seen that both theηohmic andηconcentration were very low as compared to theηactivation,and theηconcentration can be ignored because its effect was less than 3 mV.The theoretical calculation suggested that with an increasing conversion rate of K3Fe(CN)6,the cathode potential decreased and reached 0.31 V at a conversion rate of 0.99.While the anode behaves differently for constant pH and changeable pH as the reaction progresses,which reveals that the buffer solution and removal of protons play an important role in maintaining the anode potential.
基金Supported by the National Science Foundation of China(No.20831002 and 21531003)Project of Science and Technology Development of Jilin City(No.20166024)
文摘Using a rigid azo ligand 4-[(8-hydroxy-5-quinolinyl)azo]-benzoic acid(H2 L),a new supramolecular compound [Zn(L)(H2O)2]n(1) has been solvothermally synthesized and structurally characterized by X-ray single-crystal diffraction,infrared spectrum,elemental analysis,power X-ray diffraction and thermal analysis.Compound 1 crystallizes in monoclinic,space group C2/c with a = 30.372(8),b = 11.415(3),c = 9.248(3) A,β = 106.94(3)o,V = 3067.20(15)A3,C(16)H(13)N3O5Zn,Mr = 392.66,Z = 8,Dc = 1.701 Mg/m^3; F(000) = 1600,μ = 1.636 mm^-1,reflections collected:7290,reflections unique:2735,R(int)= 0.0282,R = 0.0351,wR(all data) = 0.0919,GOOF on F^2 = 1.036.Compound 1 exhibits a one-dimensional(1 D) zig-zag chain structure connected into a three-dimensional(3D) supramolecular network through hydrogen bonding interactions.Fluorescent property and electrochemical property were detected on compound 1.
文摘Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD, FTIR, DSC and AC impedance spectroscopic analysis. The amorphous nature of the polymer electrolyte films has been confirmed by XRD. The complex formation between PVA and Mg salt has been confirmed by FTIR. The glass transition temperature decreases with increasing the Mg salt concentration. The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K, and the temperature dependence seems to obey the Arrhenius behavior. Transport number measurements show that the charge transport is mainly due to ions. Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(12 + C + electrolyte) has been fabricated. The discharge characteristics of the cell were studied for a constant load of 100 kΩ.