This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and co...This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and copolymer of natural latex styrene (KOLAS) with composition of 1%, 5%, and 10% w/w of weight of blended cement in concrete mixture. They are tested for compressive strength, flexural strength, splitting tensile strength, and modulus elasticity for static analysis, and impact load and energy dissipation profile for dynamic analysis. The result shows that KOLAM with concentration 1% give better performance in static and dynamic properties. The KOLAM 1% gives improvement in flexural strength, splitting tensile strength and modulus elasticity about 4%, 13% and 3% compared to normal concrete. And for dynamic properties, KOLAM 1% could reduce impact load up to 35% and improve energy dissipation capacity about 45% compared to normal concrete. The concentration of KOLAM higher than 1% resulting negative effect to static and dynamic properties, except modulus of elasticity. For KOLAS, there were no positive trends of static and dynamic properties.展开更多
文摘This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and copolymer of natural latex styrene (KOLAS) with composition of 1%, 5%, and 10% w/w of weight of blended cement in concrete mixture. They are tested for compressive strength, flexural strength, splitting tensile strength, and modulus elasticity for static analysis, and impact load and energy dissipation profile for dynamic analysis. The result shows that KOLAM with concentration 1% give better performance in static and dynamic properties. The KOLAM 1% gives improvement in flexural strength, splitting tensile strength and modulus elasticity about 4%, 13% and 3% compared to normal concrete. And for dynamic properties, KOLAM 1% could reduce impact load up to 35% and improve energy dissipation capacity about 45% compared to normal concrete. The concentration of KOLAM higher than 1% resulting negative effect to static and dynamic properties, except modulus of elasticity. For KOLAS, there were no positive trends of static and dynamic properties.