The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity...The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity,initiator concentration and reaction temperature.Experimental results showed that the rate of polymerization is proportional to 0.3-power of the BS quantity and 1.3-power of the initiator concentration.There is a linear relationship of 2/3-power for the conversion and time.A process for the polymerization is propose to explain the experimental results.展开更多
By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The stu...By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The study shows that Z type aggregate is more sensitive to the feedback of external force than the prism aggregate in the same loading environment, and it indicates that Z type aggregate is more suitable for the research and application of concrete health monitoring. Although the incorporation of RPP would cause the compressive strength of the aggregates and the elastic modulus of hardened cement mortar to reduce slightly within the dosage of RPP by 2.25% because of the polymer film formed in the internal system, this would improve the deformability of the aggregates. In the early loading stage(in the first 60 seconds), the intelligent concrete specimens implanted with Z type smart aggregate do not show higher sensitivity as expected, although the resistance change rate changes a little bit more, the overall of it is still in balance. Adding RPP could improve the flexibility of smart aggregates exactly, and it plays an active role in prolonging the life of the smart aggregates. By implanting Z type aggregates the damage and failure of the concrete structure could be predicted accurately in this study. The results of this paper will help to promote further research and application of intelligent concrete.展开更多
文摘The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity,initiator concentration and reaction temperature.Experimental results showed that the rate of polymerization is proportional to 0.3-power of the BS quantity and 1.3-power of the initiator concentration.There is a linear relationship of 2/3-power for the conversion and time.A process for the polymerization is propose to explain the experimental results.
基金Funded by the Natural Science Foundation of Fujian Province(No.2016J01241)the National Natural Science Foundation of China(No.51608212)the Science&Technology Pillar Program of Fujian Provincial Education Department(No.JA14024)
文摘By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The study shows that Z type aggregate is more sensitive to the feedback of external force than the prism aggregate in the same loading environment, and it indicates that Z type aggregate is more suitable for the research and application of concrete health monitoring. Although the incorporation of RPP would cause the compressive strength of the aggregates and the elastic modulus of hardened cement mortar to reduce slightly within the dosage of RPP by 2.25% because of the polymer film formed in the internal system, this would improve the deformability of the aggregates. In the early loading stage(in the first 60 seconds), the intelligent concrete specimens implanted with Z type smart aggregate do not show higher sensitivity as expected, although the resistance change rate changes a little bit more, the overall of it is still in balance. Adding RPP could improve the flexibility of smart aggregates exactly, and it plays an active role in prolonging the life of the smart aggregates. By implanting Z type aggregates the damage and failure of the concrete structure could be predicted accurately in this study. The results of this paper will help to promote further research and application of intelligent concrete.