期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A combination of straw incorporation and polymer-coated urea offsets soil ammonia and nitrous oxide emissions in winter wheat fields
1
作者 Xiaoyun Wang Yajie Tian +3 位作者 Qianhui Zhang Zhengxin Zhao Rui Wang Huanjie Cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1718-1736,共19页
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort... The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China. 展开更多
关键词 straw incorporation polymer-coated urea NH_(3)and N_(2)O emissions winter wheat yields
下载PDF
Reducing Nitrogen Loss in Subsurface Tile Drainage Water with Managed Drainage and Polymer-Coated Urea in a River Bottom Soil
2
作者 Patrick R. Nash Kelly A. Nelson Peter P. Motavalli 《Journal of Water Resource and Protection》 2014年第11期988-997,共10页
Poorly-drained, river bottom soils can be high corn (Zea mays L.) yielding environments, but saturated soil conditions often reduce corn yields. Wabash soils located in river bottoms in Northeast Missouri have not bee... Poorly-drained, river bottom soils can be high corn (Zea mays L.) yielding environments, but saturated soil conditions often reduce corn yields. Wabash soils located in river bottoms in Northeast Missouri have not been traditionally tile drained due to high clay content which requires narrow tile drain spacings. Increased land prices in the region have increased interest in tile draining poorly-drained bottom land soils to increase corn yields which could have a deleterious effect on water quality. The objectives of the three-year study were to determine whether use of managed subsurface drainage (MD) in combination with a controlled release N fertilizer could reduce the annual amount of NO3--N loss through tile drainage water compared to free subsurface drainage (FD) with a non-coated urea application. Annual NO3--N loss through tile drainage water with FD ranged from 28.3 to 90.1 kg·N·ha-1. Nitrogen fertilizer source did not affect NO3--N loss through tile drainage water, which was likely due to limited corn uptake over the three-year study due to adverse weather conditions. Averaged over three years, MD reduced tile water drained 52% and NO3--N loss 29% compared to FD. Reduction in NO3--N loss through tile drainage water with MD compared to FD was due to reduced tile flow during the non-cropping period. Annual flow-weighted mean concentration of NO3--N in the tile water was 5.8 mg·N·L-1 with FD and 8.1 mg·N·L-1 with MD. Tile draining river bottom soils at this location for continuous corn production may not pose a health risk over the evaluated duration. 展开更多
关键词 Free Drainage Managed Drainage NITRATE Nitrogen polymer-coated UREA SUBSURFACE TILE Drainage
下载PDF
Denitrification Losses and N_2O Emissions from Nitrogen Fertilizer Applied to a Vegetable Field 被引量:28
3
作者 CAO Bing He Fa-Yun +2 位作者 Xu Qiu-Ming Yin Bin CAI Gui-Xin 《Pedosphere》 SCIE CAS CSCD 2006年第3期390-397,共8页
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design w... A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season. 展开更多
关键词 denitrification loss N2O emission polymer-coated urea UREA vegetable field
下载PDF
Manufacturing Technology of Refractory Metal Parts Based on SLS Rapid Prototyping
4
作者 Liu Bin,Bai Peikang,Ding Erming College of Material Science and Engineering,North University of China,Taiyuan 030051,China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S4期257-260,共4页
A rapid prototyping process of selective laser sintering (SLS) which can be used to refractory metal parts manufacturing is introduced in this text.SLS material of polymer-coated Mo powder is prepared by coating polym... A rapid prototyping process of selective laser sintering (SLS) which can be used to refractory metal parts manufacturing is introduced in this text.SLS material of polymer-coated Mo powder is prepared by coating polymer and freezing grinding methods.The laser sintering process has been experimentally researched,and optimized parameters have been acquired.The post treatment process of prototyping parts has been developed,which is sintering framework-Mo by high temperature combining with Cu impregnation method.At last,refractory metal parts of Mo/Cu composites are gained.SEM graph shows that Mo and Cu are close jointed together,and these phases distribute interlocked Mechanical and thermal properties of the material have been tested,concluding tensile strength(470 MPa),elastic modulus(267.8 GPa),elongation(15%),linear expansion(5.5×10-6/K).The technology can be applied to manufacturing fire-resisting parts of weaponry and aerospace arms,as well as conductance and cooling elements used to electronics industry. 展开更多
关键词 REFRACTORY metal PARTS polymer-coated Mo POWDER selective laser SINTERING post treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部