A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorob...A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion.展开更多
Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl ...Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.展开更多
A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of...A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.展开更多
The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribut...The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.展开更多
Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases an...Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.展开更多
Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influence of agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle s...Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influence of agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle size distribution (PSD), particle morphology and porosity of polyvinyl chloride (PVC) resin was investigated. It showed that the agitator had great influence on the smooth operation of polymerization, PS and PSD. The PS increased and PSD became narrow as polymerization conversion became high. The porosity decreased with the increase of conversion. A convenient choice of additives, both dispersants and non-ionic surfactants, allows one to adjust PS and PSD. The PS decreased with the addition of polyvinyl alcohol or hydroxypropyl methylcellulose dispersants,and increased with the addition of Span surfactants. The addition of dispersants or surfactants also affected the morphology and porosity of resin, and PVC resin with looser agglomeration and homogeneous distribution of primary particles was prepared.展开更多
Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surfa...Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surface property, particle size and content of colloidal nano-silica as well as the concentrations of monomer and surfactant on the morphology of nanocomposite latex particles were investigated by transmission electron microscope (TEM) and scanning electron microscope (SEM) in detail. Various interesting morphologies such as grape-like, Chinese gooseberry-like, pomegranate-like and normal core-shell structures were observed. Droplet nucleation mechanism competing with micelle nucleation mechanism was proposed to explain the morphological evolution of the nanocomposite particles.展开更多
The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The ...The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The original latex particles with narrow size distribution were synthesized by a new sequence emulsifier-free/emulsifier emulsion copolymerization of styrene (St) and methacrylic acid (MAA). Results indicated that the pore size decreased and the pore number increased with the increase of SDBS amount, and the morphology of the posttreated latex particles was also significantly influenced by the introducing time of SDBS in the preparation of the original latex particles, and a suitable introducing time was 3 h of polymerization. (c) 2007 Cheng You Kan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presenc...Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presence of 2.2′- azobis(2-methylpropionamidine) dihydrochloride as an initiator.The kinetics of soap-free emulsion polymerization and the effects of polymerization factors were examined.In addition,the optimum polymerization conditions of poly(styrene-co- glycidyl methacrylate) latex microspheres for...展开更多
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free em...Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.展开更多
The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites dev...The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.展开更多
One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) base...One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) based micro/nanomaterials with or without transition metals, prepared by the emulsion polymerization and subsequent heat treatment. PANI microspheres with the diameter of about 0.7 mu m have been prepared in basic (NH3 solution) condition, using two different types of surfactant (CTAB, SDS) as the stabilizer, ammonium persulphate (APS) as oxidant with aniline/surfactants molar ratio at 1/1 under the hydrothermal treatment. PANI nanorods, Fe-PANI, and Fe-Co-PANI have been synthesized in acidic (HCI) medium with aniline/surfactants molar ratio at 1/2 and polymerization carried out without stirring for 24 h. Products mainly Fe-Co-PANI have shown high current density with increasing sweep rate and excellent specific capacitance 1753 F/g at the scan rate of 1 mV/s. Additionally, it has shown high thermal stability by thermogravimetric analysis (TGA). Fe-PANI has been investigated for excellent performance toward ORR with four electron selectivity in the basic electrolyte. The PANI-based catalysts from emulsion polymerization demonstrate that the method is valuable for making non-precious metal heterogeneous electrocatalysts for ORR or energy storage and conversion technology. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presenc...Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.展开更多
Bowl-like poly (styrene-co-glycidyl methacrylate) was synthesized by swollen seeded emulsion polymerization. The polymerization was carried out in PS seed emulsion swollen by toluene, whereby the bowl-like particles f...Bowl-like poly (styrene-co-glycidyl methacrylate) was synthesized by swollen seeded emulsion polymerization. The polymerization was carried out in PS seed emulsion swollen by toluene, whereby the bowl-like particles formed at last. The shape was observed by SEM. These particles became ball-like when swollen by toluene, observed by optical microscope, and the release behavior of solvent from them was examined.展开更多
In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room t...In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room temperature, and the P(St-MAA)/P(St- NaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N^-methylenebisacrylamide (BAA, water-soluble crosslinker). Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%, the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized. When the 25/75 mole ratio of NaSS/(St + MAA) and 2 tool% of BAA were used in the seeded emulsion polymerization, the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction, and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%, resoectivelv.展开更多
Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a referen...Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a reference sample. 1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers. TEM demonstrates that there are some differences in the particle morphologies. AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10. The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier. Furthermore, with increasing amount of emulsifier, the surface free energy of the films first decreased and then increased, and the adhesion with glass plate is initially enhanced and then attenuated. The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.展开更多
The seeded semicontinuous emulsion multi-copolymerization of butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), methyl methacrylate (MMA), 2-hydroxyl propyl acrylate (HOPA) and acrylic acid (AA) was used to prepare th...The seeded semicontinuous emulsion multi-copolymerization of butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), methyl methacrylate (MMA), 2-hydroxyl propyl acrylate (HOPA) and acrylic acid (AA) was used to prepare the acrylic latexes with high-solid content. The effects of monomer emulsion feed rates (R(a)) and (R/E)(E) values, the ratio of emulsifier amount between the initial charge (R) and the addition monomer emulsion (E), on the polymerization reaction features, the viscosities, surface tensions,particle sizes and particle sizes distributions of latexes, T-g and the insoluble fractions of films, the 180 degrees peel strength, tack and holding power of pressure-sensitive adhesive (PSA) tapes, prepared from the latexes, were studied. Experimental study shows that the grafting and crosslinking fraction in the PSA tapes must be controlled within a suitable range to keep the balance of the 180 degrees peel strength, tack and holding power.展开更多
Introduction The emulsion of acrylate copolymers with actively functional groups have been widely developed and used as coating, adhesive and handling agent in spinning and weaving industry. Bessett, D. R. et al. stud...Introduction The emulsion of acrylate copolymers with actively functional groups have been widely developed and used as coating, adhesive and handling agent in spinning and weaving industry. Bessett, D. R. et al. studied the thermoset of N-(isobutoxymethyl) acrylamide by thermal evolution analysis and thermal gas chromatogram. Krejcar,展开更多
The emulsion copolymerization of vinylidene chloride (VDC) with methyl-methacrylate(MMA) and acrylonitrile (AN) was carried out by batch, seeded batch and semicontinuous pro-cesses,respectively. Significant difference...The emulsion copolymerization of vinylidene chloride (VDC) with methyl-methacrylate(MMA) and acrylonitrile (AN) was carried out by batch, seeded batch and semicontinuous pro-cesses,respectively. Significant differences were found in the physical and mechanical propertiesof the latexes and films, depending on the methods of monomer feeding. The results both intheory and experiments demonstrated that the copolymer composition and the length of the VDC sequences in the copolymer could be controlled by the modes of monomer feeding process.展开更多
Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwi...Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.展开更多
基金Supported by the National Natural Science Foundation of China (20476035, 20846003).
文摘A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion.
文摘Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.
基金Supported by the Program for New Century Excellent Talents in University(NCET-08-0204) National Natural Science Foundation of China(20976060) the Scientific Research Foundation for the Returned Overseas Chinese Scholars State Edu-cation Ministry (China)
文摘A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.
基金The National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22078325,22035007,91934301)+1 种基金the NSFC-EU project(31961133018)the Special Project of Strategic Leading Science and Technology,CAS(XDC06010302)are gratefully acknowledged.
文摘The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.
基金The project is supported by the National Natural Science Foundation of China (No. 29906009)
文摘Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.
基金Supported by the National Natural Science Foundation of China (No. 29906009).
文摘Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influence of agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle size distribution (PSD), particle morphology and porosity of polyvinyl chloride (PVC) resin was investigated. It showed that the agitator had great influence on the smooth operation of polymerization, PS and PSD. The PS increased and PSD became narrow as polymerization conversion became high. The porosity decreased with the increase of conversion. A convenient choice of additives, both dispersants and non-ionic surfactants, allows one to adjust PS and PSD. The PS decreased with the addition of polyvinyl alcohol or hydroxypropyl methylcellulose dispersants,and increased with the addition of Span surfactants. The addition of dispersants or surfactants also affected the morphology and porosity of resin, and PVC resin with looser agglomeration and homogeneous distribution of primary particles was prepared.
基金This research was financially supported by the Key Project of China Educational Ministry (No. 103064)the Doctoral Foundation of University (No. 20020246031)
文摘Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surface property, particle size and content of colloidal nano-silica as well as the concentrations of monomer and surfactant on the morphology of nanocomposite latex particles were investigated by transmission electron microscope (TEM) and scanning electron microscope (SEM) in detail. Various interesting morphologies such as grape-like, Chinese gooseberry-like, pomegranate-like and normal core-shell structures were observed. Droplet nucleation mechanism competing with micelle nucleation mechanism was proposed to explain the morphological evolution of the nanocomposite particles.
文摘The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The original latex particles with narrow size distribution were synthesized by a new sequence emulsifier-free/emulsifier emulsion copolymerization of styrene (St) and methacrylic acid (MAA). Results indicated that the pore size decreased and the pore number increased with the increase of SDBS amount, and the morphology of the posttreated latex particles was also significantly influenced by the introducing time of SDBS in the preparation of the original latex particles, and a suitable introducing time was 3 h of polymerization. (c) 2007 Cheng You Kan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the State Key Laboratory of Chemical Engineering of Zhejiang Universitythe financial support from the National Natural Science Foundation of China (No.20676113).
文摘Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presence of 2.2′- azobis(2-methylpropionamidine) dihydrochloride as an initiator.The kinetics of soap-free emulsion polymerization and the effects of polymerization factors were examined.In addition,the optimum polymerization conditions of poly(styrene-co- glycidyl methacrylate) latex microspheres for...
基金Funded by the Jiangsu Provincial Creative Fund for Scientific and Tech-nical Small and Medium-size Enterprise
文摘Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.
基金Funded by the National Natural Science Foundation of China(No.21076227)
文摘The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.
基金support by the National Natural Science Foundation of China(Grant no.21373042)
文摘One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) based micro/nanomaterials with or without transition metals, prepared by the emulsion polymerization and subsequent heat treatment. PANI microspheres with the diameter of about 0.7 mu m have been prepared in basic (NH3 solution) condition, using two different types of surfactant (CTAB, SDS) as the stabilizer, ammonium persulphate (APS) as oxidant with aniline/surfactants molar ratio at 1/1 under the hydrothermal treatment. PANI nanorods, Fe-PANI, and Fe-Co-PANI have been synthesized in acidic (HCI) medium with aniline/surfactants molar ratio at 1/2 and polymerization carried out without stirring for 24 h. Products mainly Fe-Co-PANI have shown high current density with increasing sweep rate and excellent specific capacitance 1753 F/g at the scan rate of 1 mV/s. Additionally, it has shown high thermal stability by thermogravimetric analysis (TGA). Fe-PANI has been investigated for excellent performance toward ORR with four electron selectivity in the basic electrolyte. The PANI-based catalysts from emulsion polymerization demonstrate that the method is valuable for making non-precious metal heterogeneous electrocatalysts for ORR or energy storage and conversion technology. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.
文摘Bowl-like poly (styrene-co-glycidyl methacrylate) was synthesized by swollen seeded emulsion polymerization. The polymerization was carried out in PS seed emulsion swollen by toluene, whereby the bowl-like particles formed at last. The shape was observed by SEM. These particles became ball-like when swollen by toluene, observed by optical microscope, and the release behavior of solvent from them was examined.
文摘In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room temperature, and the P(St-MAA)/P(St- NaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N^-methylenebisacrylamide (BAA, water-soluble crosslinker). Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%, the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized. When the 25/75 mole ratio of NaSS/(St + MAA) and 2 tool% of BAA were used in the seeded emulsion polymerization, the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction, and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%, resoectivelv.
基金Funded by Ministry of Education (No.2006-KL-008),and Qingxin Hanerchem Chemical Technology Co,Ltd.
文摘Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10), and a conventional emulsifier OP-10 as a reference sample. 1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers. TEM demonstrates that there are some differences in the particle morphologies. AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10. The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier. Furthermore, with increasing amount of emulsifier, the surface free energy of the films first decreased and then increased, and the adhesion with glass plate is initially enhanced and then attenuated. The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.
基金This work was supported by the National Natural Science Foundation of China
文摘The seeded semicontinuous emulsion multi-copolymerization of butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), methyl methacrylate (MMA), 2-hydroxyl propyl acrylate (HOPA) and acrylic acid (AA) was used to prepare the acrylic latexes with high-solid content. The effects of monomer emulsion feed rates (R(a)) and (R/E)(E) values, the ratio of emulsifier amount between the initial charge (R) and the addition monomer emulsion (E), on the polymerization reaction features, the viscosities, surface tensions,particle sizes and particle sizes distributions of latexes, T-g and the insoluble fractions of films, the 180 degrees peel strength, tack and holding power of pressure-sensitive adhesive (PSA) tapes, prepared from the latexes, were studied. Experimental study shows that the grafting and crosslinking fraction in the PSA tapes must be controlled within a suitable range to keep the balance of the 180 degrees peel strength, tack and holding power.
文摘Introduction The emulsion of acrylate copolymers with actively functional groups have been widely developed and used as coating, adhesive and handling agent in spinning and weaving industry. Bessett, D. R. et al. studied the thermoset of N-(isobutoxymethyl) acrylamide by thermal evolution analysis and thermal gas chromatogram. Krejcar,
基金The project is supported by Beijing Natural Science Fund.
文摘The emulsion copolymerization of vinylidene chloride (VDC) with methyl-methacrylate(MMA) and acrylonitrile (AN) was carried out by batch, seeded batch and semicontinuous pro-cesses,respectively. Significant differences were found in the physical and mechanical propertiesof the latexes and films, depending on the methods of monomer feeding. The results both intheory and experiments demonstrated that the copolymer composition and the length of the VDC sequences in the copolymer could be controlled by the modes of monomer feeding process.
基金The research was supported by the National 863 Project of China(No.2001AA242041).
文摘Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.