期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Polymer efficiency and sulfate concentration for hybrid EOR application to an acidic carbonate reservoir
1
作者 Yeonkyeong Lee Wonmo Sung Jihoon Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期993-1004,共12页
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi... Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water. 展开更多
关键词 Polymer efficiency Low-salinity polymer flooding Polymer adsorption Wettability alteration Sulfate ion Acidic carbonate reservoir
下载PDF
Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
2
作者 凌云 闫东晓 +4 位作者 王鹏飞 汪茂 文琪 刘峰 王宇钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期91-94,共4页
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e... A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes. 展开更多
关键词 of on in from with Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
下载PDF
Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency 被引量:21
3
作者 Qunping Fan Wenyan Su +7 位作者 Yan Wang Bing Guo Yufeng Jiang Xia Guo Feng Liu Thomas P.Russell Maojie Zhang Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第5期531-537,共7页
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were deve... A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm^2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future. 展开更多
关键词 polymer solar cells fluorine substitution non-fullerene wide bandgap conjugated polymer power conversion efficiency
原文传递
Efficiency of terahertz detection in electro-optic polymer sensors with interdigitated coplanar electrodes
4
作者 蒋强 王暄 +1 位作者 王玥 李志远 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第9期84-86,共3页
We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor ... We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor improves more significantly detection sensitivity than does a sensor with sandwich configurations. 展开更多
关键词 VIEW efficiency of terahertz detection in electro-optic polymer sensors with interdigitated coplanar electrodes THZ
原文传递
A chlorinated non-fullerene acceptor for efficient polymer solar cells 被引量:5
5
作者 Mei Luo Can Zhu +4 位作者 Jun Yuan Liuyang Zhou M.L.Keshtov D.Yu Godovsky Yingping Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2343-2346,共4页
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize t... Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize the photoelectric properties is reported.A new narrow bandgap(1.30 eV)chlorinated non-fullerene electron acceptor(Y15),based on benzo[d][1,2,3] triazole with two 3-undecylthieno[2’,3’:4,5] thieno[3,2-b] pyrrole fused-7-heterocyclic ring,with absorption edge extending to the near-infrared(NIR) region,namely A-DA’D-A type structure,is designed and synthesized.Its electrochemical and optoelectronic properties are systematically investigated.Benefitting from its NIR light harvesting,the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency(PCE) of 14.13%,when blending with a wide bandgap polymer donor PM6.Our results show that the A-DA’D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells(PSCs). 展开更多
关键词 Electron acceptor Y15 Chlorinated Non-fullerene electron acceptors Efficient polymer solar cells Narrow bandgap
原文传递
Polymeric prodrug for bio-controllable gene and drug co-delivery 被引量:1
6
作者 Huizhen Jia Si Chen +2 位作者 Renxi Zhuo Jun Feng Xianzheng Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1397-1404,共8页
A polymeric polyethylenimine(PEI)-based prodrug of anticancer doxorubicin(DOX)(PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug ... A polymeric polyethylenimine(PEI)-based prodrug of anticancer doxorubicin(DOX)(PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug co-delivery in response to the intracellular acid microenvironments in the late endosome/lysosome compartments. The cytotoxicity of PEI-hyd-DOX was evaluated by the MTT assay and the cellular uptake was monitored using confocal laser scanning microscopy. The polymeric prodrug can respond with a high sensitivity to the specific acid condition inside cells, thus permitting the precise biocontrol over intracellular drug liberation with high drug efficacy. The chemical attachment of drug molecules also led to the relatively reduced toxicity and the enhanced transfection efficiency compared with parent PEI. The resulting data adumbrated the potential of PEI-hyd-DOX to co-deliver DOX and therapeutic gene for the combination of chemotherapy and gene therapy. 展开更多
关键词 gene/drug co-delivery hydrazone bond p H-sensitivity polymeric prodrug transfection efficiency
原文传递
Inverted polymer solar cells with Zn_2SnO_4 nanoparticles as the electron extraction layer
7
作者 Xiao-Juan Huang Xiang Yao +4 位作者 Wen-Zhan Xu Kai Wang Fei Huang Xiong Gong Yong Cao 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第8期1755-1759,共5页
In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar ce... In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar cells(i-PSCs). Moreover, poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) is used to modify the surface properties of ZSO thin film. By using the ZSO NPs/PFN as the EEL, the i-PSCs fabricated by poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b0] dithio-phene-2,6-diyl-altethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl](PTB7) blended with(6,6)-phenyl-C_(71)-butyric acid methylester(PC_(71)BM) bulk heterojunction(BHJ) composite, exhibits a power conversion efficiency(PCE) of 8.44%, which is nearly 10% enhancement as compared with that of7.75% observed from the i-PSCs by PTB7:PC_(71)BM BHJ composite using the ZnO/PFN EEL. The enhanced PCE is originated from improved interfacial contact between the EEL with BHJ active layer and good energy level alignment between BHJ active layer and the EEL. Our results indicate that we provide a simple way to boost efficiency of i-PSCs. 展开更多
关键词 Electron transport layer Zn_2SnO_4 nanoparticles Bulk heterojunction Power conversion efficiency Inverted polymer solar cells
原文传递
Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells
8
作者 Xiaonan Xue Yao Liu +4 位作者 Xiangyi Meng Xiaobo Sun Lijun Huo Wei Ma Yanming Sun 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第2期243-250,共8页
The open-circuit voltage(V_(oc))is one of the important parameters that influence the power conversion efficiency(PCE)of polymer solar cells.Its value is mainly determined by the energy level offset between the highes... The open-circuit voltage(V_(oc))is one of the important parameters that influence the power conversion efficiency(PCE)of polymer solar cells.Its value is mainly determined by the energy level offset between the highest occupied molecular orbital(HOMO)of the donor and the lowest unoccupied molecular orbital(LUMO)of the acceptor.Therefore,decreasing the HOMO value of the polymer could lead to a high V_(oc)and thus increasing the cell efficiency.Here we report a facile way to lower the polymer HOMO energy level by using methoxyl substituted-benzodithiophene(BDT)unit.The polymer with the methoxyl functionl group(POBDT(S)-T1)exhibited a HOMO value of-5.65 eV,which is deeper than that(-5.52 eV)of polymer without methoxyl unit(PBDT(S)-T1).As a result,POBDT(S)-T1-based solar cells show a high V_(oc)of 0.98 V and PCE of 9.2%.In contrast,PBDT(S)-T1-based devices show a relatively lower V_(oc)of 0.89 V and a moderate PCE of 7.4%.The results suggest that the involvement of methoxyl group into conjugated copolymers can efficiencly lower their HOMO energy levels. 展开更多
关键词 polymer solar cell conjugated polymer HOMO open-circuit voltage power conversion efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部