Polymeric phosphate ferric sulfate (PPFS),a new improved coagulation reagent,was prepared by polymeric ferric sulfate (PFS),Na2HPO4 and NaOH. The degree of iron polymerisation (Fepol) of PPFS was determined by means o...Polymeric phosphate ferric sulfate (PPFS),a new improved coagulation reagent,was prepared by polymeric ferric sulfate (PFS),Na2HPO4 and NaOH. The degree of iron polymerisation (Fepol) of PPFS was determined by means of the ferron-timed spectroscopy method. Furthermore,the effect of n(P)/n(Fe),alkalization degree,pH value,and PPFS dosage on the removal rate of eutrophic water turbidity and chl-a and ζ-potential of products were also investigated. The experimental results show that the best n(P)/n(Fe) of flocculation effect in stable product of PFFS is 0.3; the best alkalization degree of flocculation effect is 0.2,while the n(P)/n(Fe) is 0.3. Under the neutral and subalkalic (pH value is 7-8) conditions,PPFS achieves the best processing efficiency. PPFS has more excellent turbidity and higher chlorophyl removal rate by studying treatment eutrophic water in comparison with PFS.展开更多
A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil...A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil Refining wastewater from Liaohe Petrochemical Corporation was the treatment object. Overall, the in-fluencing factors and synthesis technology conditions of PSPFS were determined by experiments. First of all, the conditions of influencing factors were showed as follows: the mass percent concentration of ferrous sulfate 55%,concentration of sodium silicate 15% , the molar ratio of ferrous sulfate and hydrogen peroxide 1.2:1, oxidation temperature 40 degree Celsius, oxidation time 4 hours, polymerization temperature 60 de-gree Celsius and polymerization time 2 hours. Secondly, the optimal ratios of components were determined by uniform design method. The molar ratio of Fe/Si is 5.0:1, Fe/H2SO4 is 3.2:1, and Fe/P is 18.0:1. At last, the optimal experimental condition was determined as follows: the dosing quantity 200mg/L, pH value 5.5~9, temperature 25~45℃, stirring time 2 min, and standing time 3 min, according to the result of floc-culation experiments with PSPFS. Besides, the result of the comparative experiments showed that the effi-ciency of PSPFS was much better than the reference flocculants.展开更多
Incorporating of hydrous ferric oxide(HFO)inside porous supports with large sizes has become an effective way to decontaminate the water from heavy metals.Ubiquitous anions like sulfate are usually present in high con...Incorporating of hydrous ferric oxide(HFO)inside porous supports with large sizes has become an effective way to decontaminate the water from heavy metals.Ubiquitous anions like sulfate are usually present in high concentrations in water,and might greatly affect adsorption behavior of hybrid HFO.Here,a polymer-based HFO-CPS was fabricated by encapsulating nano-HFO inside a chloromethylated polystyrene polymer(CPS)and the reactivity of HFO-CPS with Cu(Ⅱ)was evaluated in the presence of sulfate ions.Surface complexation theory was firstly employed to describe the effect of sulfate on Cu(Ⅱ)adsorption edges of hybrid HFO-CPS,where constant capacitance model(CCM)was adopted.The available weak adsorption site Fe_((2))OH of hybrid HFO-CPS was found to decrease from 20% Fe to 5% Fe,which might be caused by the pore plugging effect after HFO encapsulation.With the assumption that a ternary complex was formed,the effect of sulfate on Cu(Ⅱ)adsorption by HFO-CPS were successfully described by CCM using the optimized Fe_((2))OH site under different sulfate concentrations(1 or 10 mmol·L^(-1))and Cu/Fe ratios(0.0042 or 0.0252).It is confirmed that the formation of FeOHCuSO4 ternary surface complexes played an important role in enhancing Cu(Ⅱ)adsorption on HFO-CPS in the presence of sulfate.展开更多
Polyferric\|silicate\|sulfate(PFSS),as a new type of coagulant,was prepared by using sodium silicate, sulfuric acid and ferric sulfate as materials.The zeta potential of hydrolyzate of PFSS under different pH values w...Polyferric\|silicate\|sulfate(PFSS),as a new type of coagulant,was prepared by using sodium silicate, sulfuric acid and ferric sulfate as materials.The zeta potential of hydrolyzate of PFSS under different pH values was investigated.The effects of Fe/SiO\-2 molar ratio and dosage of PFSS on turbidity removal were studied. The relation between the optimum coagulation pH range and Fe/SiO\-2 molar ratio was found and the coagulation mechanism of PFSS was discussed.The experimental results showed that Fe/SiO\-2 molar ratio has an effect on the zeta potential of hydrolyzate, the coagulation performance and the optimum coagulation pH range of PFSS and that PFSS gives the best turbidity removal effect when its Fe/SiO\-2 molar ratio was 1.5.展开更多
The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity...The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity,initiator concentration and reaction temperature.Experimental results showed that the rate of polymerization is proportional to 0.3-power of the BS quantity and 1.3-power of the initiator concentration.There is a linear relationship of 2/3-power for the conversion and time.A process for the polymerization is propose to explain the experimental results.展开更多
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi...Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.展开更多
In this article, a new type of coagulant material has been investigated and the performance of the coagulation process using this type of coagulant was evaluated. This new type is a combination of zinc oxide nanoparti...In this article, a new type of coagulant material has been investigated and the performance of the coagulation process using this type of coagulant was evaluated. This new type is a combination of zinc oxide nanoparticles and polyferric sulfate (ZnOPFS). The structure of zinc oxide nanoparticles was determined by spectroscopic, X-ray and electron microscopy methods, and based on this, it was determined that ZnOPFS is a complex and mixed compound that is mainly composed of zinc oxide nanoparticles and ferric sulfate. The effects of Zn/Fe (Zn/Fe) molar ratio and aging (time) on acidity and zeta potential were also evaluated using a specific method. The obtained results showed that in the simultaneous deposition process, zinc ions can prevent the formation of polyferric acid coagulation and subsequently improve the stability of ZnOPFS.展开更多
Two lanthanide-oxo-cluster polymers were synthesized by hydrothermal reaction using Ln_2O_3 as initial lanthanide materials:[Ln_4(SO_4)_4(OH)_4(H_2O)_7]·_4H_2O(Ln = Er 1,Ho 2),and characterized by PXRD,I...Two lanthanide-oxo-cluster polymers were synthesized by hydrothermal reaction using Ln_2O_3 as initial lanthanide materials:[Ln_4(SO_4)_4(OH)_4(H_2O)_7]·_4H_2O(Ln = Er 1,Ho 2),and characterized by PXRD,IR spectra,X-ray single-crystal diffraction,2D IR correlation spectra and UV-visible absorption spectra.Single-crystal X-ray analyses reveal that compounds 1 and 2 are isostructural,and they are both crystallized in the orthorhombic system Pccn space group.Compound 1 is a 3D lanthanide cluster polymer based on tetranuclear cubane-like [Er_4(μ_3-OH)_4]^8+ cations and SO_4^2- anions.The overall structure of 1 can be assigned to 6-connected pcu-type topology with the point symbol of(4^12.6^3).展开更多
A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(C...A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.展开更多
Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface...Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface was about 0.40 μm when 0.2 M N-methylanUine was oxidized with 0.2 M ammonium persulfate in 0.2 M of HClO4 solution. The size of microspheres can be controlled by changing reaction time and temperature. The acid concentration was critical for the formation of microspheres with smooth surfaces. The excellent antibacterial performance of PNMA in novolac epoxy coating to sulfate reducing bacteria was demonstrated. Moreover, in API media, PNMA inhibited growth of SRB and then reduced the corrosion rate of carbon steel remarkably.展开更多
In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vor...In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48℃ was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.展开更多
Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in m...Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure.Here,we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy,using phytic acid-based natural compounds as an example,for the spatially controlled fabrication of metal coordination bio-derived polymers.The resultant ferric phytate polymer nanospheres feature hollow architecture,ordered meso-channels of^12 nm,high surface area of 401 m2 g−1,and large pore volume of 0.53 cm3 g−1.As an advanced anode material,this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g−1 at 50 mA g−1,good rate capability,and cycling stability for sodium-ion batteries.This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.展开更多
In this paper, the addition of admixed superabsorbent polymer (SAP) improved the microstructure and durability-related properties in a cement-based system with supplementary materials. This is an important issue in re...In this paper, the addition of admixed superabsorbent polymer (SAP) improved the microstructure and durability-related properties in a cement-based system with supplementary materials. This is an important issue in real construction projects when good durability properties are required. This study investigates the effect of SAP on the systems using cement replacement by fly ash and silica fume considering the strength properties and durability properties of paste under sulfate attack of cement-based system. The replacement considered in the study was of 10% silica fume and 20% fly ash in each case, the dosage of SAP was 0.25% of the total amount of cementitious material. The results showed that the addition of SAP in the cement-based system improved the compressive strength and reduced expansion to sulfate attack. Scanning electron micrographs showed that utilization of fly ash with silica fume and silica fume with SAP resulted in a much denser microstructure, thereby, leading to an increase in compressive strength and lower expansion under sulfate attack.展开更多
基金Project(20777095) supported by the National Natural Science Foundation of ChinaProject(CSTC, 2006AB7055) supported by Chongqing Science and Technology Commission of ChinaProject(708071) supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education,China
文摘Polymeric phosphate ferric sulfate (PPFS),a new improved coagulation reagent,was prepared by polymeric ferric sulfate (PFS),Na2HPO4 and NaOH. The degree of iron polymerisation (Fepol) of PPFS was determined by means of the ferron-timed spectroscopy method. Furthermore,the effect of n(P)/n(Fe),alkalization degree,pH value,and PPFS dosage on the removal rate of eutrophic water turbidity and chl-a and ζ-potential of products were also investigated. The experimental results show that the best n(P)/n(Fe) of flocculation effect in stable product of PFFS is 0.3; the best alkalization degree of flocculation effect is 0.2,while the n(P)/n(Fe) is 0.3. Under the neutral and subalkalic (pH value is 7-8) conditions,PPFS achieves the best processing efficiency. PPFS has more excellent turbidity and higher chlorophyl removal rate by studying treatment eutrophic water in comparison with PFS.
文摘A new kind of flocculants, named Polymer Silicate Phosphate Ferric Sulfate(PSPFS), was synthesized by ferrous sulfate used as the main material and activated silicic acid as additive. In this paper, High-Viscosity Oil Refining wastewater from Liaohe Petrochemical Corporation was the treatment object. Overall, the in-fluencing factors and synthesis technology conditions of PSPFS were determined by experiments. First of all, the conditions of influencing factors were showed as follows: the mass percent concentration of ferrous sulfate 55%,concentration of sodium silicate 15% , the molar ratio of ferrous sulfate and hydrogen peroxide 1.2:1, oxidation temperature 40 degree Celsius, oxidation time 4 hours, polymerization temperature 60 de-gree Celsius and polymerization time 2 hours. Secondly, the optimal ratios of components were determined by uniform design method. The molar ratio of Fe/Si is 5.0:1, Fe/H2SO4 is 3.2:1, and Fe/P is 18.0:1. At last, the optimal experimental condition was determined as follows: the dosing quantity 200mg/L, pH value 5.5~9, temperature 25~45℃, stirring time 2 min, and standing time 3 min, according to the result of floc-culation experiments with PSPFS. Besides, the result of the comparative experiments showed that the effi-ciency of PSPFS was much better than the reference flocculants.
基金financially supported by National Natural Science Foundation of China (21607080)Natural Science Foundation of Jiangsu Province (BK20160946)+1 种基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials
文摘Incorporating of hydrous ferric oxide(HFO)inside porous supports with large sizes has become an effective way to decontaminate the water from heavy metals.Ubiquitous anions like sulfate are usually present in high concentrations in water,and might greatly affect adsorption behavior of hybrid HFO.Here,a polymer-based HFO-CPS was fabricated by encapsulating nano-HFO inside a chloromethylated polystyrene polymer(CPS)and the reactivity of HFO-CPS with Cu(Ⅱ)was evaluated in the presence of sulfate ions.Surface complexation theory was firstly employed to describe the effect of sulfate on Cu(Ⅱ)adsorption edges of hybrid HFO-CPS,where constant capacitance model(CCM)was adopted.The available weak adsorption site Fe_((2))OH of hybrid HFO-CPS was found to decrease from 20% Fe to 5% Fe,which might be caused by the pore plugging effect after HFO encapsulation.With the assumption that a ternary complex was formed,the effect of sulfate on Cu(Ⅱ)adsorption by HFO-CPS were successfully described by CCM using the optimized Fe_((2))OH site under different sulfate concentrations(1 or 10 mmol·L^(-1))and Cu/Fe ratios(0.0042 or 0.0252).It is confirmed that the formation of FeOHCuSO4 ternary surface complexes played an important role in enhancing Cu(Ⅱ)adsorption on HFO-CPS in the presence of sulfate.
文摘Polyferric\|silicate\|sulfate(PFSS),as a new type of coagulant,was prepared by using sodium silicate, sulfuric acid and ferric sulfate as materials.The zeta potential of hydrolyzate of PFSS under different pH values was investigated.The effects of Fe/SiO\-2 molar ratio and dosage of PFSS on turbidity removal were studied. The relation between the optimum coagulation pH range and Fe/SiO\-2 molar ratio was found and the coagulation mechanism of PFSS was discussed.The experimental results showed that Fe/SiO\-2 molar ratio has an effect on the zeta potential of hydrolyzate, the coagulation performance and the optimum coagulation pH range of PFSS and that PFSS gives the best turbidity removal effect when its Fe/SiO\-2 molar ratio was 1.5.
文摘The process of emulsifier-free copolymerization of the Styrene-Butyl Acrylate-K_sS_sO_s-water in the presence of Barium Sulfate(BS)powder was investigated under varied conditions within the range of BS powder quantity,initiator concentration and reaction temperature.Experimental results showed that the rate of polymerization is proportional to 0.3-power of the BS quantity and 1.3-power of the initiator concentration.There is a linear relationship of 2/3-power for the conversion and time.A process for the polymerization is propose to explain the experimental results.
基金supported by the Energy Efficiency&Resources(No.20212010200010)the“Development of Intelligential Diagnosis,Abandonment Process and Management Technology for Decrepit Oil and Gas Wells”(No.20216110100010)of the Korea Institute of Energy Technology EvaluationPlanning(KETEP)grant funded by the Korean Government Ministry of Trade,Industry&Energy.
文摘Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.
文摘In this article, a new type of coagulant material has been investigated and the performance of the coagulation process using this type of coagulant was evaluated. This new type is a combination of zinc oxide nanoparticles and polyferric sulfate (ZnOPFS). The structure of zinc oxide nanoparticles was determined by spectroscopic, X-ray and electron microscopy methods, and based on this, it was determined that ZnOPFS is a complex and mixed compound that is mainly composed of zinc oxide nanoparticles and ferric sulfate. The effects of Zn/Fe (Zn/Fe) molar ratio and aging (time) on acidity and zeta potential were also evaluated using a specific method. The obtained results showed that in the simultaneous deposition process, zinc ions can prevent the formation of polyferric acid coagulation and subsequently improve the stability of ZnOPFS.
基金supported by the National Natural Science Foundation of China(No.21473030)the Natural Science Foundation of Fujian Province(No.2013J01041)the Foundation of State Key Laboratory of Structural Chemistry(No.20130012)
文摘Two lanthanide-oxo-cluster polymers were synthesized by hydrothermal reaction using Ln_2O_3 as initial lanthanide materials:[Ln_4(SO_4)_4(OH)_4(H_2O)_7]·_4H_2O(Ln = Er 1,Ho 2),and characterized by PXRD,IR spectra,X-ray single-crystal diffraction,2D IR correlation spectra and UV-visible absorption spectra.Single-crystal X-ray analyses reveal that compounds 1 and 2 are isostructural,and they are both crystallized in the orthorhombic system Pccn space group.Compound 1 is a 3D lanthanide cluster polymer based on tetranuclear cubane-like [Er_4(μ_3-OH)_4]^8+ cations and SO_4^2- anions.The overall structure of 1 can be assigned to 6-connected pcu-type topology with the point symbol of(4^12.6^3).
基金Project(2012GS430203)supported by Science and Technology Program for Public Wellbeing,ChinaProject(51504299)supported by the National Natural Science Foundation of ChinaProject(2015WK3016)supported by Science and Technology Program of Hunan Province,China
文摘A polymeric hydroxyl ferric phosphate(PHFP)was prepared by using a byproduct of titanium dioxide containing ferrous sulfate and phosphates under alkaline condition.The PHFP was used to immobilize lead(Pb)and cadmium(Cd)in soils.Fourier transform infrared spectra,X-ray diffraction were applied to revealing the characteristics of PHFP,and the modified Tessier sequential extraction and column leaching experiment with simulated acid rain were used to assess the effectiveness of immobilization of Cd and Pb in soils by PHFP.The results showed that PHFP was indeed a polymer with complicated OH-Fe-P structure and consisted of Fe6(OH)5(H2O)4(PO4)4(H2O)2and Fe25(PO4)14(OH)24.Moreover,the removal rates of DTPA-extractable Cd and Pb in soils reached up to33%and45%,and the water-soluble Cd and Pb decreased by56%and58%,respectively,when PHFP was added in soils at4%dosage.In addition,the immobilization of Cd and Pb contributed to transforming water soluble,exchangeable and carbonate-bonded fractions to Fe and Mn oxides-bonded,organic-bonded and residual fractions.Under leaching with simulated acid rain,Cd and Pb release amount in PHFP amended soil declined by53%and52%,respectively,as compared with non-treated soil.The result implied that PHFP had a potential application for the remediation of Cd-and Pb-contaminated soils.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education MinistryNatural Science Foundation of Hubei Province of China(No.2006ABA078)
文摘Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface was about 0.40 μm when 0.2 M N-methylanUine was oxidized with 0.2 M ammonium persulfate in 0.2 M of HClO4 solution. The size of microspheres can be controlled by changing reaction time and temperature. The acid concentration was critical for the formation of microspheres with smooth surfaces. The excellent antibacterial performance of PNMA in novolac epoxy coating to sulfate reducing bacteria was demonstrated. Moreover, in API media, PNMA inhibited growth of SRB and then reduced the corrosion rate of carbon steel remarkably.
基金Project(31200382)supported by the National Natural Science Foundation of ChinaProject(2013FJ4068)supported by the Planned Science and Technology Project of Hunan Province,ChinaProject supported by Australia CSIRO OCE Science Leader Grant
文摘In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48℃ was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.
基金financially supported by the Natural Science Foundation of China (Grant Nos.51773062 and 61831021)
文摘Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure.Here,we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy,using phytic acid-based natural compounds as an example,for the spatially controlled fabrication of metal coordination bio-derived polymers.The resultant ferric phytate polymer nanospheres feature hollow architecture,ordered meso-channels of^12 nm,high surface area of 401 m2 g−1,and large pore volume of 0.53 cm3 g−1.As an advanced anode material,this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g−1 at 50 mA g−1,good rate capability,and cycling stability for sodium-ion batteries.This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.
文摘In this paper, the addition of admixed superabsorbent polymer (SAP) improved the microstructure and durability-related properties in a cement-based system with supplementary materials. This is an important issue in real construction projects when good durability properties are required. This study investigates the effect of SAP on the systems using cement replacement by fly ash and silica fume considering the strength properties and durability properties of paste under sulfate attack of cement-based system. The replacement considered in the study was of 10% silica fume and 20% fly ash in each case, the dosage of SAP was 0.25% of the total amount of cementitious material. The results showed that the addition of SAP in the cement-based system improved the compressive strength and reduced expansion to sulfate attack. Scanning electron micrographs showed that utilization of fly ash with silica fume and silica fume with SAP resulted in a much denser microstructure, thereby, leading to an increase in compressive strength and lower expansion under sulfate attack.