Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging diseases to wheat in the world. The cultivation of resistant varieties of wheat is essential for controlling the powdery ...Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging diseases to wheat in the world. The cultivation of resistant varieties of wheat is essential for controlling the powdery mildew epidemic. Wheat landraces are important resources of resistance to many diseases. Mapping powdery mildew resistance genes from wheat landraces will promote the development of new varieties with disease resistance. The Chinese wheat landrace Baiyouyantiao possesses characteristic of disease resistance to powdery mildew. To identify the resistance gene in this landrace, Baiyouyantiao was crossed with the susceptible cultivar Jingshuang 16 and seedlings of parents and F1, BC1, F2, and F~:3 were tested with Bgt isolate E09. The genetic results showed that the resistance of Baiyouyantiao to E09 was controlled by a single recessive gene, tentatively designated PmBYYT. An Illumina wheat 90K single-nucleotide polymorphism (SNP) array was applied to screen polymorphisms between F2-resistant and F2-susceptible DNA bulks for identifying the chromosomal location of PmBYYT. A high percentage of polymorphic SNPs between the resistant and susceptible DNA bulks was found on chro- mosome 7B, indicating that PmBYYT may be located on this chromosome. A genetic linkage map of PmBYYTconsisting of two simple sequence repeat markers and eight SNP markers was developed. The two flanking markers were SNP markers W7BL-8 and W7BL-15, with genetic distances of 3 and 2.9 cM, respectively. The results of this study demonstrated the rapid characterization of a wheat disease resistance gene and SNP marker development using the 90K SNP assay. The flanking markers of gene PmBYYTwill benefit marker-assisted selection (MAS) and map-based cloning in breeding wheat cultivars with powdery mildew resistance.展开更多
Innovations in genomics have enabled the development of low-cost,high-resolution,single nucleotide polymorphism(SNP)genotyping arrays that accelerate breeding progress and support basic research in crop science.Here,w...Innovations in genomics have enabled the development of low-cost,high-resolution,single nucleotide polymorphism(SNP)genotyping arrays that accelerate breeding progress and support basic research in crop science.Here,we developed and validated the Soy SNP618 K array(618,888 SNPs)for the important crop soybean.The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions;29.34%of the SNPs mapped to genic regions representing 86.85%of the 56,044annotated high-confidence genes.Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions,highlighting the potential of the Soy SNP618 K array in supporting gene bank management.The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data,suggesting that the ascertainment bias in the Soy SNP618 K array was largely compensated for.Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time,E2 and Gm PRR3 b,and of a new candidate gene,Gm VIP5.Moreover,genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate(>0.65).Thus,the Soy SNP618 K array is a valuable genomic tool that can be used to address many questions in applied breeding,germplasm management,and basic crop research.展开更多
Cell karyotyping in patients with small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL) is not easy to success, and small genomic lesions (〈5 Mb) are not routinely detected by this method. It is likel...Cell karyotyping in patients with small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL) is not easy to success, and small genomic lesions (〈5 Mb) are not routinely detected by this method. It is likely that a complete genomic characterization of CLL requires a combination of fluorescence in situ hybridization (FISH), single nucleotide polymorphism (SNP) array profiling for comprehensive genome-wide analysis of acquired genomic copy number aberrations (aCNAs) and loss-of-heterozygosity (LOH) in dominant clones, and karyotyping for detection of balanced translocations, isochromosomes, and marker chromosomes. SNP array analysis can reveal chromothripsis, a phenomenon by which regions of the cancer genome are shattered and recombined to generate frequent oscillations between the lower and the higher DNA copy number states. This study provided cytogenetic findings in a CLL/SLL patient with v-myc avian myelocytomatosis viral oncogene homolog (C-MYC)-amplification by FISH, in which SNP arrays detected profound genomic upheaval due to chromothripsis that may lead to malignant transformation.展开更多
基金funded by the National Key Research and Development Program of China (2017YFD0201701)the Special Fund for Agro-scientific Research in the Public Interest,China (201303016)the Science and Technology Project for Xingjiang Uygur Autonomous Region,China (2013911092)
文摘Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging diseases to wheat in the world. The cultivation of resistant varieties of wheat is essential for controlling the powdery mildew epidemic. Wheat landraces are important resources of resistance to many diseases. Mapping powdery mildew resistance genes from wheat landraces will promote the development of new varieties with disease resistance. The Chinese wheat landrace Baiyouyantiao possesses characteristic of disease resistance to powdery mildew. To identify the resistance gene in this landrace, Baiyouyantiao was crossed with the susceptible cultivar Jingshuang 16 and seedlings of parents and F1, BC1, F2, and F~:3 were tested with Bgt isolate E09. The genetic results showed that the resistance of Baiyouyantiao to E09 was controlled by a single recessive gene, tentatively designated PmBYYT. An Illumina wheat 90K single-nucleotide polymorphism (SNP) array was applied to screen polymorphisms between F2-resistant and F2-susceptible DNA bulks for identifying the chromosomal location of PmBYYT. A high percentage of polymorphic SNPs between the resistant and susceptible DNA bulks was found on chro- mosome 7B, indicating that PmBYYT may be located on this chromosome. A genetic linkage map of PmBYYTconsisting of two simple sequence repeat markers and eight SNP markers was developed. The two flanking markers were SNP markers W7BL-8 and W7BL-15, with genetic distances of 3 and 2.9 cM, respectively. The results of this study demonstrated the rapid characterization of a wheat disease resistance gene and SNP marker development using the 90K SNP assay. The flanking markers of gene PmBYYTwill benefit marker-assisted selection (MAS) and map-based cloning in breeding wheat cultivars with powdery mildew resistance.
基金supported by the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(CAAS-ZDRW20210)the National Key Research and Development Program of China(nos.2020YFE0202300 and 2021YFD1201600)the Platform of National Crop Germplasm Resources of China(nos.2016-004 and 2017-004)。
文摘Innovations in genomics have enabled the development of low-cost,high-resolution,single nucleotide polymorphism(SNP)genotyping arrays that accelerate breeding progress and support basic research in crop science.Here,we developed and validated the Soy SNP618 K array(618,888 SNPs)for the important crop soybean.The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions;29.34%of the SNPs mapped to genic regions representing 86.85%of the 56,044annotated high-confidence genes.Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions,highlighting the potential of the Soy SNP618 K array in supporting gene bank management.The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data,suggesting that the ascertainment bias in the Soy SNP618 K array was largely compensated for.Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time,E2 and Gm PRR3 b,and of a new candidate gene,Gm VIP5.Moreover,genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate(>0.65).Thus,the Soy SNP618 K array is a valuable genomic tool that can be used to address many questions in applied breeding,germplasm management,and basic crop research.
基金Source of Support: This study was supported by grants from Natural Science Foundation of China (No. 81100379 and No. 81302079), Science and Technology Planning Project of Guangdong Province, China (No. 2013B022000102), Medical Scientific Research Foundation of Guangdong Province, China (No. A2014292) and Key Clinical Disciplines of Guangdong Province (No. 20111219).
文摘Cell karyotyping in patients with small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL) is not easy to success, and small genomic lesions (〈5 Mb) are not routinely detected by this method. It is likely that a complete genomic characterization of CLL requires a combination of fluorescence in situ hybridization (FISH), single nucleotide polymorphism (SNP) array profiling for comprehensive genome-wide analysis of acquired genomic copy number aberrations (aCNAs) and loss-of-heterozygosity (LOH) in dominant clones, and karyotyping for detection of balanced translocations, isochromosomes, and marker chromosomes. SNP array analysis can reveal chromothripsis, a phenomenon by which regions of the cancer genome are shattered and recombined to generate frequent oscillations between the lower and the higher DNA copy number states. This study provided cytogenetic findings in a CLL/SLL patient with v-myc avian myelocytomatosis viral oncogene homolog (C-MYC)-amplification by FISH, in which SNP arrays detected profound genomic upheaval due to chromothripsis that may lead to malignant transformation.