Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and unif...Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.展开更多
In this paper, we combine Graeffe matrices with the classical numerical method of Dandelin-Graeffe to estimate bounds for the moduli of the zeros of polynomials. Furthermore, we give some examples showing significant ...In this paper, we combine Graeffe matrices with the classical numerical method of Dandelin-Graeffe to estimate bounds for the moduli of the zeros of polynomials. Furthermore, we give some examples showing significant gain for the convergence towards the polynomials dominant zeros moduli.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现...随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现有轨迹PLA压缩方法不能最优化地在线压缩多维数据的现状,在最大误差限定(maximum error bound,记为L_(∞))下提出多维轨迹数据的最优化PLA压缩问题(记为m DisPLA_(∞)),并给出一种在线MDisPLA算法予以解决.该算法利用“分治-融合”的策略扩展一维最优化PLA算法,以最优化地压缩多维轨迹数据.MDisPLA算法具有线性时间复杂性,可以生成最少的不连续分割,且可以保证生成直线表示的质量,即原始数据点和对应解压缩点之间的同步误差具有上界.通过与基于同步距离锥交(cone intersection using the synchronous Euclidean distance,CISED)的轨迹压缩算法进行理论和实验比较,验证了MDisPLA算法是稳健的,可生成具有保质性的直线表示.MDisPLA算法以更低的内存消耗,较CISED算法提高了14倍左右的处理速度,降低了约48%的分割个数和10.5%的存储个数.MDisPLA算法在保证压缩质量的同时,显著提高了处理速度和降低了存储空间,整体上优于CISED算法.展开更多
Many fields require the zeros of orthogonal polynomials. In this paper, the middle variable was improved to give a new asymptotic approximation, with error bounds, for the Jacobi polynomials P (α,β) n(cosθ) (...Many fields require the zeros of orthogonal polynomials. In this paper, the middle variable was improved to give a new asymptotic approximation, with error bounds, for the Jacobi polynomials P (α,β) n(cosθ) (0≤θ≤π/2,α,β>-1), as n→+∞. An accurate approximation with error bounds is also constructed for the zero θ n,s of P (α,β) n(cosθ)(α≥0,β>-1).展开更多
The study of zeros of orthogonal functions is an important topic. In this paper, by improving the middle variable x(t), we've got a new form of asymptotic approximation, completed with error bounds, it is construct...The study of zeros of orthogonal functions is an important topic. In this paper, by improving the middle variable x(t), we've got a new form of asymptotic approximation, completed with error bounds, it is constructed for the Jacobi functions φu^(α,β)(t)(α 〉 -1) as μ→∞. Besides, an accurate approximation with error bounds is also constructed correspondingly for the zeros tμ,s of φu^(α,β)(t)(α≥ 0) as μ→∞, uniformly with respect to s = 1, 2,....展开更多
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional...The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.展开更多
In this paper, we study the approximation of identity operator and the convolution inte- gral operator Bm by Fourier partial sum operators, Fejer operators, Vallee--Poussin operators, Ces^ro operators and Abel mean op...In this paper, we study the approximation of identity operator and the convolution inte- gral operator Bm by Fourier partial sum operators, Fejer operators, Vallee--Poussin operators, Ces^ro operators and Abel mean operators, respectively, on the periodic Wiener space (C1 (R), W°) and obtaia the average error estimations.展开更多
In the paper we investigate smoothing method for solving semi-infinite minimax problems. Not like most of the literature in semi-infinite minimax problems which are concerned with the continuous time version(i.e., th...In the paper we investigate smoothing method for solving semi-infinite minimax problems. Not like most of the literature in semi-infinite minimax problems which are concerned with the continuous time version(i.e., the one dimensional semi-infinite minimax problems), the primary focus of this paper is on multi- dimensional semi-infinite minimax problems. The global error bounds of two smoothing approximations for the objective function are given and compared. It is proved that the smoothing approximation given in this paper can provide a better error bound than the existing one in literature.展开更多
In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin pr...In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin projection onto a lowdimensional space associated with a smooth“parametric manifold”in order to get a dimension reduction;ii)an efficient and effective greedy sampling method for identification of optimal and numerically stable approximations to have a rapid convergence;iii)an a posteriori error estimation procedure:rigorous and sharp bounds for the linearfunctional outputs of interest and over the potential solution or related quantities of interest like velocity and/or pressure;iv)an Offline-Online computational decomposition strategies to achieve a minimum marginal computational cost for high performance in the real-time and many-query(e.g.,design and optimization)contexts.We present three illustrative results for inviscid potential flows in parametrized geometries representing a Venturi channel,a circular bend and an added mass problem.展开更多
基金Project supported by Scientific Research Common Program of Beijing Municipal Commission of Education of China (No.KM200310015060)
文摘Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
文摘In this paper, we combine Graeffe matrices with the classical numerical method of Dandelin-Graeffe to estimate bounds for the moduli of the zeros of polynomials. Furthermore, we give some examples showing significant gain for the convergence towards the polynomials dominant zeros moduli.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.
文摘随着全球定位系统的发展和应用,巨量的轨迹数据被实时收集,给数据的传输、存储和分析带来挑战.基于分段线性近似(piecewise linear approximation,PLA)的数据压缩技术因具有简单直观、压缩存储低和传输快的特点被广泛应用和研究.针对现有轨迹PLA压缩方法不能最优化地在线压缩多维数据的现状,在最大误差限定(maximum error bound,记为L_(∞))下提出多维轨迹数据的最优化PLA压缩问题(记为m DisPLA_(∞)),并给出一种在线MDisPLA算法予以解决.该算法利用“分治-融合”的策略扩展一维最优化PLA算法,以最优化地压缩多维轨迹数据.MDisPLA算法具有线性时间复杂性,可以生成最少的不连续分割,且可以保证生成直线表示的质量,即原始数据点和对应解压缩点之间的同步误差具有上界.通过与基于同步距离锥交(cone intersection using the synchronous Euclidean distance,CISED)的轨迹压缩算法进行理论和实验比较,验证了MDisPLA算法是稳健的,可生成具有保质性的直线表示.MDisPLA算法以更低的内存消耗,较CISED算法提高了14倍左右的处理速度,降低了约48%的分割个数和10.5%的存储个数.MDisPLA算法在保证压缩质量的同时,显著提高了处理速度和降低了存储空间,整体上优于CISED算法.
基金Supported by the Natural Science Foundation of Beijing
文摘Many fields require the zeros of orthogonal polynomials. In this paper, the middle variable was improved to give a new asymptotic approximation, with error bounds, for the Jacobi polynomials P (α,β) n(cosθ) (0≤θ≤π/2,α,β>-1), as n→+∞. An accurate approximation with error bounds is also constructed for the zero θ n,s of P (α,β) n(cosθ)(α≥0,β>-1).
基金Supported by Developing Key Subject Item of Beijing
文摘The study of zeros of orthogonal functions is an important topic. In this paper, by improving the middle variable x(t), we've got a new form of asymptotic approximation, completed with error bounds, it is constructed for the Jacobi functions φu^(α,β)(t)(α 〉 -1) as μ→∞. Besides, an accurate approximation with error bounds is also constructed correspondingly for the zeros tμ,s of φu^(α,β)(t)(α≥ 0) as μ→∞, uniformly with respect to s = 1, 2,....
基金Project supported by the National Natural Science Foundation of China(Nos.12250410244,11872151)the Jiangsu Province Education Development Special Project-2022 for Double First-ClassSchool Talent Start-up Fund of China(No.2022r109)the Longshan Scholar Program of Jiangsu Province of China。
文摘The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.
文摘In this paper, we study the approximation of identity operator and the convolution inte- gral operator Bm by Fourier partial sum operators, Fejer operators, Vallee--Poussin operators, Ces^ro operators and Abel mean operators, respectively, on the periodic Wiener space (C1 (R), W°) and obtaia the average error estimations.
基金Supported by the National Natural Science Foundation of China(No.10671203,No.70621001) and the faculty research grant at MSU
文摘In the paper we investigate smoothing method for solving semi-infinite minimax problems. Not like most of the literature in semi-infinite minimax problems which are concerned with the continuous time version(i.e., the one dimensional semi-infinite minimax problems), the primary focus of this paper is on multi- dimensional semi-infinite minimax problems. The global error bounds of two smoothing approximations for the objective function are given and compared. It is proved that the smoothing approximation given in this paper can provide a better error bound than the existing one in literature.
文摘In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin projection onto a lowdimensional space associated with a smooth“parametric manifold”in order to get a dimension reduction;ii)an efficient and effective greedy sampling method for identification of optimal and numerically stable approximations to have a rapid convergence;iii)an a posteriori error estimation procedure:rigorous and sharp bounds for the linearfunctional outputs of interest and over the potential solution or related quantities of interest like velocity and/or pressure;iv)an Offline-Online computational decomposition strategies to achieve a minimum marginal computational cost for high performance in the real-time and many-query(e.g.,design and optimization)contexts.We present three illustrative results for inviscid potential flows in parametrized geometries representing a Venturi channel,a circular bend and an added mass problem.