The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the ...The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the (G~/G)-expansion method, we gain some new solutions.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral fo...A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.展开更多
The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. ...The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new.展开更多
基金Project supported by the Scientific Research Fund of Education Department of Heilongjiang Province of China (Grant No.12531475)
文摘The complete discrimination system for polynomial method is applied to the long-short-wave interaction system to obtain the classifications of single traveling wave solutions. Compared with the solutions given by the (G~/G)-expansion method, we gain some new solutions.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
文摘A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.
基金The project supported by Scientific Reseaxch Fund of Education Department of Heilongjiang Province of China under Grant No. 11511008
文摘The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new.