Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow s...Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.展开更多
Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single at...Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single atom catalysts(SACs)as promising catalysts for efficient hydrogen isotope separation.Pt SACs and Pt nanoparticles(NPs)have been fabricated on nanoarray-structured nitrogen-doped graphite foil(NGF)substrate by a polyol reduction method.The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm^(-2) and a high separation factor of 6.83 for hydrogen and deuterium separation,much better than Pt NPs counterpart.Density functional theory(DFT)calculations ascribe the high activity and selectivity to the constructed Pt-N_(2)C_(2) structure.This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.29774037,29873058)the Chinese Academy of Sciences(No.KJ952-J1-508)is gratefully acknowledged.
文摘Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.
基金This work was financially supported by the National Natural Science Foundation of China(No.22109146)Institute of Materials CAEP(Nos.TP03201703,TP03201802,CX2019018,and WDZC202105).
文摘Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single atom catalysts(SACs)as promising catalysts for efficient hydrogen isotope separation.Pt SACs and Pt nanoparticles(NPs)have been fabricated on nanoarray-structured nitrogen-doped graphite foil(NGF)substrate by a polyol reduction method.The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm^(-2) and a high separation factor of 6.83 for hydrogen and deuterium separation,much better than Pt NPs counterpart.Density functional theory(DFT)calculations ascribe the high activity and selectivity to the constructed Pt-N_(2)C_(2) structure.This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.