[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating...[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.展开更多
该研究采用高效液相色谱、电感耦合等离子发射光谱法等技术对宫保鸡丁中有机酸、呈味核苷酸及游离氨基酸等进行定性定量分析,并结合滋味活性值(taste active value,TAV)探究宫保鸡丁的特征滋味物质。结果显示,5种宫保鸡丁(A1~A5)中均检...该研究采用高效液相色谱、电感耦合等离子发射光谱法等技术对宫保鸡丁中有机酸、呈味核苷酸及游离氨基酸等进行定性定量分析,并结合滋味活性值(taste active value,TAV)探究宫保鸡丁的特征滋味物质。结果显示,5种宫保鸡丁(A1~A5)中均检出6种有机酸、3种呈味核苷酸、6种无机离子、17种游离氨基酸及辣椒素,且均未检出二氢辣椒素。其中,A4样含有较高的有机酸和无机离子,其呈味核苷酸及游离氨基酸含量均高于其他4种样品,含量分别为1392.65 mg/kg和10567.80 mg/kg,滋味更浓厚。另外,富马酸、苹果酸、琥珀酸、乙酸、5′-肌苷酸、辣椒素、钠离子、钾离子、氯离子、磷酸根离子、谷氨酸及组氨酸12种呈味组分的TAV均大于1,表明其为宫保鸡丁的特征滋味物质,对产品整体滋味呈现至关重要。展开更多
Currently,the most cost-effective and efficient method for phosphorus(P)removal from wastewater is enhanced biological P removal(EPBR)via polyphosphate-accumulating organisms(PAOs).This study integrates a literature r...Currently,the most cost-effective and efficient method for phosphorus(P)removal from wastewater is enhanced biological P removal(EPBR)via polyphosphate-accumulating organisms(PAOs).This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment.The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment.Notably,Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates,possess specific enzymes for ATP production from polyphosphate,and have electrochemical transporters for acetate and C4-dicarboxylates.In contrast,Tetrasphaera,Candidatus Phosphoribacter,Knoellia,and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids.Additionally,this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants.Notably,FISH-Raman spectroscopy emerges as one of the most advanced detection techniques.Overall,this review provides critical insights into PAO research,underscoring the need for enhanced strategies in biological phosphorus removal.展开更多
A phosphate-accumulating bacteria strain PAO3-1 was isolated from biological phosphorus removal sludge supplied with sodium acetate as carbon source under stable performance. This strain has good enhanced biological p...A phosphate-accumulating bacteria strain PAO3-1 was isolated from biological phosphorus removal sludge supplied with sodium acetate as carbon source under stable performance. This strain has good enhanced biological phosphorus removal effect on normal activated sludge system. Phosphorus removal ratio was raised form 44% with no added strain to more than 82% with strain strengthening biological phosphorus removal. It is identified to be Alcaligenes sp. according to its morphology, biochemical characteristics and 16S rDNA sequence analysis. The cell of strain PAO3-1 is straight bacilli form, 0.4×1.1μm, no flagellum, gram negative and special aerobiotic. The optimal temperature and pH for growth are 32℃-37℃ and 5.5-9.5, respectively. The shape of slant clone is feathery. The phosphate accumulating rate of strain PAO3-1 was 8.1mgP/g cell·h, and 14.3 mgP/g cell·h when in phosphate-starving situation, which was 76.5% higher than that in non-starving situation. Its phosphate release rate of log course in anaerobic phase and in culture without phosphorus was 7.6mgP/g cell·h, while in stable course the rate was 6.1mgP/g cell·h. The rate in stable course was 19.7% lower than that in log course.展开更多
Filamentous bacteria(FB)overgrowth is an important cause of sludge bulking in wastewater treatment plants(WWTPs).However,to date,methods for the cultivation and preservation of isolated FB in the laboratory have not b...Filamentous bacteria(FB)overgrowth is an important cause of sludge bulking in wastewater treatment plants(WWTPs).However,to date,methods for the cultivation and preservation of isolated FB in the laboratory have not been completely described.Furthermore,research on whether FB can function as phosphorus accumulating organisms(PAOs)is limited.In this study,a pure strain,a Pseudomonas putida PAO-1(P.putida PAO-1)isolate with phosphorus removal functions was isolated from the biofilm of an alternating anaerobic/aerobic biofilter(AABF),and its physiological characteristics were studied.Nitrate or nitrite could be used by the strain P.putida PAO-1 as electron acceptors for denitrification during phosphorus anoxic uptake,and 0.63 mg NO-3-N was consumed to reduce 1 mg soluble orthophosphate(SOP)by P.putida PAO-1.The strain P.putida PAO-1 consumed phosphorus within the optimal pH range of 6 to 8 and the temperature range of 25℃to 35℃.Cell deformity was a main morphological trait of the strain P.putida PAO-1,and it could elongate(with an elongation rate of 300%-500%)when it was subjected to oligotrophic or high-salt stress(15 g·L-1 NaCl).The findings in this study provide a microbiological reference for understanding the special characteristics of a denitrifying PAO.展开更多
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha...Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater.展开更多
旨在从环境样品中筛选对富营养化水体具有良好脱氮除磷效果的好氧反硝化菌。采集福州某养猪场污水处理池中的水样。通过反硝化细菌培养基培养、BTB培养基平板分离、硝酸盐还原试验和蓝白斑筛选法、异染颗粒以及聚-β-羟基丁酸(PHB)颗粒...旨在从环境样品中筛选对富营养化水体具有良好脱氮除磷效果的好氧反硝化菌。采集福州某养猪场污水处理池中的水样。通过反硝化细菌培养基培养、BTB培养基平板分离、硝酸盐还原试验和蓝白斑筛选法、异染颗粒以及聚-β-羟基丁酸(PHB)颗粒染色试验,筛选获得两株具有脱氮除磷特性的菌株,命名为N1和N2。经16S r RNA基因序列分析,N1和N2分别属于无色杆菌属(Achromobacter.sp)和短波单胞菌属(Brevundimonas.sp)。将菌株N1和N2复配,获得脱氮除磷复合菌FIM-1。考察了菌株对人工合成污水和富营养化水体脱氮除磷的效果。结果表明,两株菌在含磷量较低的水体中,对磷的去除率较高,相对于单菌,复合菌表现出更佳的脱氮除磷效果。展开更多
为探究反硝化除磷-诱导结晶磷回收工艺中缺氧池污泥释磷、吸磷以及微生物特征,利用荧光原位杂交(fluorescence in situ hybridization,FISH)技术、电子扫描显微镜(scanning electron microscope,SEM)观察了微生物的数量、分布和形态;通...为探究反硝化除磷-诱导结晶磷回收工艺中缺氧池污泥释磷、吸磷以及微生物特征,利用荧光原位杂交(fluorescence in situ hybridization,FISH)技术、电子扫描显微镜(scanning electron microscope,SEM)观察了微生物的数量、分布和形态;通过批次试验考察了污泥在厌氧/好氧和厌氧/缺氧2种模式下的释磷和吸磷特征。结果表明:该双污泥系统缺氧池中聚磷菌占总细菌比例的69.7%,明显高于单污泥系统中富集的聚磷菌比例,污泥中的微生物多呈杆状;厌氧/好氧、厌氧/缺氧模式下单位污泥浓度(mixed liquor suspended solids,MLSS)总吸磷量(以PO43--P计)分别为22.84、18.60 mg/g,反硝化聚磷菌(denitrifying polyphosphate-accumulating organisms,DPAO)占聚磷菌(polyphosphate-accumulating organisms,PAO)的比例为81.44%,表明在长期的厌氧/缺氧运行条件下可以富集到以硝酸盐为电子受体的反硝化聚磷菌,同时还存在着仅以氧气为电子受体的聚磷菌;通过pH值和氧化还原电位(oxidation reduction potential,ORP)的实时监测可以快速地了解污水生物处理系统中各类反应的进程,对调控工艺参数有着重要的意义。综上所述,为保证污水生物处理工艺的正常稳定运行,将微生物分析与常规的化学参数分析结合起来考察将是未来发展的必然趋势。展开更多
基金Supported by Zhaoqing University Innovation and Entrepreneurship Training Program for College Students(202310580018).
文摘[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.
文摘该研究采用高效液相色谱、电感耦合等离子发射光谱法等技术对宫保鸡丁中有机酸、呈味核苷酸及游离氨基酸等进行定性定量分析,并结合滋味活性值(taste active value,TAV)探究宫保鸡丁的特征滋味物质。结果显示,5种宫保鸡丁(A1~A5)中均检出6种有机酸、3种呈味核苷酸、6种无机离子、17种游离氨基酸及辣椒素,且均未检出二氢辣椒素。其中,A4样含有较高的有机酸和无机离子,其呈味核苷酸及游离氨基酸含量均高于其他4种样品,含量分别为1392.65 mg/kg和10567.80 mg/kg,滋味更浓厚。另外,富马酸、苹果酸、琥珀酸、乙酸、5′-肌苷酸、辣椒素、钠离子、钾离子、氯离子、磷酸根离子、谷氨酸及组氨酸12种呈味组分的TAV均大于1,表明其为宫保鸡丁的特征滋味物质,对产品整体滋味呈现至关重要。
基金supported by King Abdullah University of Science and Technology(KAUST).
文摘Currently,the most cost-effective and efficient method for phosphorus(P)removal from wastewater is enhanced biological P removal(EPBR)via polyphosphate-accumulating organisms(PAOs).This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment.The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment.Notably,Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates,possess specific enzymes for ATP production from polyphosphate,and have electrochemical transporters for acetate and C4-dicarboxylates.In contrast,Tetrasphaera,Candidatus Phosphoribacter,Knoellia,and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids.Additionally,this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants.Notably,FISH-Raman spectroscopy emerges as one of the most advanced detection techniques.Overall,this review provides critical insights into PAO research,underscoring the need for enhanced strategies in biological phosphorus removal.
基金Fok Ying Tung Education Foundation ( No.94004)Shanghai Natural ScienceFoundation(No.04ZR14010)Young Teacher Foundation of Donghua University (No.113-10-0044065)
文摘A phosphate-accumulating bacteria strain PAO3-1 was isolated from biological phosphorus removal sludge supplied with sodium acetate as carbon source under stable performance. This strain has good enhanced biological phosphorus removal effect on normal activated sludge system. Phosphorus removal ratio was raised form 44% with no added strain to more than 82% with strain strengthening biological phosphorus removal. It is identified to be Alcaligenes sp. according to its morphology, biochemical characteristics and 16S rDNA sequence analysis. The cell of strain PAO3-1 is straight bacilli form, 0.4×1.1μm, no flagellum, gram negative and special aerobiotic. The optimal temperature and pH for growth are 32℃-37℃ and 5.5-9.5, respectively. The shape of slant clone is feathery. The phosphate accumulating rate of strain PAO3-1 was 8.1mgP/g cell·h, and 14.3 mgP/g cell·h when in phosphate-starving situation, which was 76.5% higher than that in non-starving situation. Its phosphate release rate of log course in anaerobic phase and in culture without phosphorus was 7.6mgP/g cell·h, while in stable course the rate was 6.1mgP/g cell·h. The rate in stable course was 19.7% lower than that in log course.
基金National Natural Science Foundation of China(No.21777024)National Key Research and Development Project,China(No.2019YFC0408503)。
文摘Filamentous bacteria(FB)overgrowth is an important cause of sludge bulking in wastewater treatment plants(WWTPs).However,to date,methods for the cultivation and preservation of isolated FB in the laboratory have not been completely described.Furthermore,research on whether FB can function as phosphorus accumulating organisms(PAOs)is limited.In this study,a pure strain,a Pseudomonas putida PAO-1(P.putida PAO-1)isolate with phosphorus removal functions was isolated from the biofilm of an alternating anaerobic/aerobic biofilter(AABF),and its physiological characteristics were studied.Nitrate or nitrite could be used by the strain P.putida PAO-1 as electron acceptors for denitrification during phosphorus anoxic uptake,and 0.63 mg NO-3-N was consumed to reduce 1 mg soluble orthophosphate(SOP)by P.putida PAO-1.The strain P.putida PAO-1 consumed phosphorus within the optimal pH range of 6 to 8 and the temperature range of 25℃to 35℃.Cell deformity was a main morphological trait of the strain P.putida PAO-1,and it could elongate(with an elongation rate of 300%-500%)when it was subjected to oligotrophic or high-salt stress(15 g·L-1 NaCl).The findings in this study provide a microbiological reference for understanding the special characteristics of a denitrifying PAO.
基金supported by the Key Research and Development Program of Zhejiang(2022C03075)National Natural Science Foundation of China(22241603)Zhejiang Provincial Natural Science Foundation of China(LR22D010001)。
文摘Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater.
文摘旨在从环境样品中筛选对富营养化水体具有良好脱氮除磷效果的好氧反硝化菌。采集福州某养猪场污水处理池中的水样。通过反硝化细菌培养基培养、BTB培养基平板分离、硝酸盐还原试验和蓝白斑筛选法、异染颗粒以及聚-β-羟基丁酸(PHB)颗粒染色试验,筛选获得两株具有脱氮除磷特性的菌株,命名为N1和N2。经16S r RNA基因序列分析,N1和N2分别属于无色杆菌属(Achromobacter.sp)和短波单胞菌属(Brevundimonas.sp)。将菌株N1和N2复配,获得脱氮除磷复合菌FIM-1。考察了菌株对人工合成污水和富营养化水体脱氮除磷的效果。结果表明,两株菌在含磷量较低的水体中,对磷的去除率较高,相对于单菌,复合菌表现出更佳的脱氮除磷效果。