The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, an...Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.展开更多
Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. ...Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.展开更多
A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized...A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane(MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance(SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon(LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10^(-7) mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works.展开更多
A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects o...A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.展开更多
A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The resul...A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke,with better dispersing and smaller particle size.The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol(P-NP).The results showed that the apparent rate constant for the P-NP at 1.0 g·L^-1 catalyst,30 mmol·L^-1 H2O2,pH=3.0,30 ℃ and the best ratio of Coke/Fe3O4 0.6,was evaluated to be 0.027 min^-1,the removalrate of CODCr was 75.47%,and the dissolubility of Fe was 2.42 mg·L^-1.Compared with pure Fe3O4,the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced.And Fe3O4/Coke was a green and environmentalcatalyst with high catalytic activity,showing a good chemicalstability and reusability.展开更多
Objective This paper aims to elucidate the combined toxicity of magnetite nanoparticles/Chromium [MNPs/Cr(Ⅵ)] adducts. Methods The HEK293 cell was exposed to either Cr(Ⅵ) or MNPs, or their adducts MNPs/Cr(Ⅵ)....Objective This paper aims to elucidate the combined toxicity of magnetite nanoparticles/Chromium [MNPs/Cr(Ⅵ)] adducts. Methods The HEK293 cell was exposed to either Cr(Ⅵ) or MNPs, or their adducts MNPs/Cr(Ⅵ). The cytotoxicity was evaluated by assessing the cell viability, apoptosis, oxidative stress induction, and cellular uptake. Results The toxicity of formed adducts is significantly reduced when compared to Cr(Ⅵ) anions. We found that the cellular uptake of MNPs/Cr(Ⅵ) adduct was rare, only few particles were endocytosed from the extracellular fluid and not accumulated in the cell nucleus. On the other hand, the Cr(Ⅵ) anions entered cells, generated oxidative stress, induced cell apoptosis, and caused cytotoxicity. Conclusion The results showed minor effects of the nanoadducts on the tested cells and supported that magnetite nanoparticles could be implemented in the wastewater treatment process in which advantageous properties outweigh the risks.展开更多
Fe3O4 magnetic nanoparticles were prepared by the aqueous co-precipitation of FeCl3-6H2O and FeCl2-4H2O with addition of ammonium hydroxide. The conditions for the preparation of Fe3O4 magnetic nanoparticles were opti...Fe3O4 magnetic nanoparticles were prepared by the aqueous co-precipitation of FeCl3-6H2O and FeCl2-4H2O with addition of ammonium hydroxide. The conditions for the preparation of Fe3O4 magnetic nanoparticles were optimized, and Fe3O4 magnetic nanoparticles obtained were characterized systematically by means of transmission electron microscope (TEM), dynamic laser scattering analyzer (DLS) and X-ray diffraction (XRD). The results revealed that the magnetic nanoparticles were cubic shaped and dispersive, with narrow size distribution and average diameter of 11.4 nm. It was found that the homogeneous variation of pH value in the solution via the control on the dropping rate of aqueous ammonia played a critical role in size distribution. The magnetic response of the product in the magnetic field was also analyzed and evaluated carefully. A 32.6 mT magnetic field which is produced by four ferromagnets was found to be sufficient to excite the dipole moments of 0.05 g Fe3O4 powder 2 cm far away from the ferromagnets. In conclusion, the Fe3O4 magnetic nanoparticles with excellent properties were competent for the magnetic carders of targeted-drug in future application.展开更多
Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are ha...Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.展开更多
Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a mul...Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a multifunctional interlayer composed of paper-derived carbon(PC) scaffold, Fe3O4 nanoparticles,graphene, and graphite sheets is designed for applications in LSBs. The porous PC skeleton formed by the interweaving long-fibers not only facilitates fast transfer of Li ions and electrons but also provides a physical barrier for the polysulfide shuttling. The secondary Fe3O4@graphene component can reduce the polarization, boost the attachment of polysulfides, and promote the charging-discharging kinetics. The outer graphitic sheets layers benefit the interfacial electrochemistry and the utilization of S-containing species.The efficient obstruction of polysulfides diffusion is further witnessed via in situ ultraviolet-visible characterization and first-principles simulations. When 73% sulfur/commercial acetylene black is used as the cathode, the cell exhibits excellent capacity retention with high capacities at 0.5 C for 1000 cycles and even up to 10 C for 500 cycles, an ultrahigh rate capability up to 10 C(478 m Ah g-1), and a high arealsulfur loading of 8.05 mg cm-2. The strategy paves the way for developing multifunctional composites for LSBs with superior performance.展开更多
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s...Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.展开更多
Fe3O4-octadecyltrichlorosilane(Fe3O4-OTS)was synthesized and used to remove dyes in a competitive system.Fe3O4-OTS was prepared by slow hydrolysis of OTS in cyclohexane on the surface of Fe3O4obtained through coprec...Fe3O4-octadecyltrichlorosilane(Fe3O4-OTS)was synthesized and used to remove dyes in a competitive system.Fe3O4-OTS was prepared by slow hydrolysis of OTS in cyclohexane on the surface of Fe3O4obtained through coprecipitation method.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and contact angle analyzer(CA)were used to analyze the properties of Fe3O4-OTS.Methyl orange(MO)and methylene blue(MB)were selected as model molecules to study the influence mechanism of p H and ionic strength on competitive adsorption.The results of EDS and CA indicated that Fe3O4 was modified successfully with OTS on the surface.Silicon appeared and carbon content increased obviously on the surface of adsorbent.Contact angle of adsorbent increased from 0~o to 107~o after being modified by OTS.Fe3O4-OTS showed good separation for MO and MB in competitive system,which has potential to separate dyes in sewage.Separation factor(β~OB)changed from 18.724 to 0.017,when p H changed from 7 to 12,revealing that MO and MB could be separated almost thoroughly by Fe3O4-OTS.p H could change the surface charge of Fe3O4-OTS and structure of dyes,and thus change the interactions of competitive system indirectly.Even though hydrophobic interaction was enhanced,ionic strength reduced the difference of electrostatic interaction between dyes and Fe3O4-OTS.So it is unfavorable to separate dyes with opposite charges when ionic strength increases.These findings may provide theoretical guidances to separate two-component dye pollutants.展开更多
A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was stu...A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.展开更多
Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil vi...Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship...The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.展开更多
The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of ...The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of an individual MNP shows a typical dipolar response.The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations.Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures,such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution.This is crucial for the development and application of magnetic nanostructures and devices.展开更多
Antigens and antibodies can bind specifically, so antibiotic antibody shows potential biological and environmental applications on the removal of antibiotic. In the present study, novel antibody complex was synthesize...Antigens and antibodies can bind specifically, so antibiotic antibody shows potential biological and environmental applications on the removal of antibiotic. In the present study, novel antibody complex was synthesized from polyamide-amine dendrimer immobilized tetracycline(TC) antibody with the encapsulation of magnetic Fe3O4 nanoparticles. As-prepared magnetic Fe3O4-PAMAM-antibody complexes were characterized by different techniques such as Fourier transform infrared(FT-IR), X-ray diffraction(XRD), Nuclear magnetic resonance(NMR)and ultraviolet(UV) analysis spectra. The prepared antibody complexes exhibited high adsorption properties for TC from aqueous solutions. These results suggest that the antibody complex expects to be a potential candidate for the wastewater treatment.展开更多
The lattice structures of epitaxial Fe3O4 films deposited on MgO were studied systematically using polarized Raman spectroscopy as a function of film thickness,where interesting phenomena were observed.Firstly,the spe...The lattice structures of epitaxial Fe3O4 films deposited on MgO were studied systematically using polarized Raman spectroscopy as a function of film thickness,where interesting phenomena were observed.Firstly,the spectral conflict to the Raman selection rules(RSRs)was observed under cross-sectional configuration,which can be attributed to the tetragonal deformation in the growth direction due to the lattice mismatch between Fe3O4 and MgO.Secondly,the blue shift and broadening of Raman peaks evidenced the decrease of the tensile strain in Fe3O4 films with decreasing thickness.Thirdly,distinct from the other Raman modes,the lowest T2g mode exhibited asymmetric lineshape,which can be interpreted using the spatial correlation model.The increased correlation length introduced in the model can well explain the enhanced peak asymmetry feature with decreasing thickness.These results provide useful information for understanding the lattice structure of epitaxial Fe3O4 film.展开更多
A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a...A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.展开更多
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
文摘Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.
文摘Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51273048 and 51203025)the Natural Science Foundation of Guangdong Province(No.S2012040007725)
文摘A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane(MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance(SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon(LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10^(-7) mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works.
基金Supported by the National Natural Science Foundation of China(No.41201487)the Natural Science Foundation of Hebei Province(No.2014202074)
文摘A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.
基金Funded by the Specialized Research Fund for Doctoral Program of Higher Education of China(No.20114219110002)the Educational Department of Hubei Province of China(No.D20131107)the Natural Science Fundation of Hubei Provice(No.2014CFB810)
文摘A composite material(Fe3O4/Coke)using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemicaloxidation precipitation method and characterized by SEM,XRD,Raman,and FTIR.The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke,with better dispersing and smaller particle size.The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol(P-NP).The results showed that the apparent rate constant for the P-NP at 1.0 g·L^-1 catalyst,30 mmol·L^-1 H2O2,pH=3.0,30 ℃ and the best ratio of Coke/Fe3O4 0.6,was evaluated to be 0.027 min^-1,the removalrate of CODCr was 75.47%,and the dissolubility of Fe was 2.42 mg·L^-1.Compared with pure Fe3O4,the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced.And Fe3O4/Coke was a green and environmentalcatalyst with high catalytic activity,showing a good chemicalstability and reusability.
文摘Objective This paper aims to elucidate the combined toxicity of magnetite nanoparticles/Chromium [MNPs/Cr(Ⅵ)] adducts. Methods The HEK293 cell was exposed to either Cr(Ⅵ) or MNPs, or their adducts MNPs/Cr(Ⅵ). The cytotoxicity was evaluated by assessing the cell viability, apoptosis, oxidative stress induction, and cellular uptake. Results The toxicity of formed adducts is significantly reduced when compared to Cr(Ⅵ) anions. We found that the cellular uptake of MNPs/Cr(Ⅵ) adduct was rare, only few particles were endocytosed from the extracellular fluid and not accumulated in the cell nucleus. On the other hand, the Cr(Ⅵ) anions entered cells, generated oxidative stress, induced cell apoptosis, and caused cytotoxicity. Conclusion The results showed minor effects of the nanoadducts on the tested cells and supported that magnetite nanoparticles could be implemented in the wastewater treatment process in which advantageous properties outweigh the risks.
基金the Technology Project of Jiangxi Provincial Education DepartmentJiangxi Provincial Science Department
文摘Fe3O4 magnetic nanoparticles were prepared by the aqueous co-precipitation of FeCl3-6H2O and FeCl2-4H2O with addition of ammonium hydroxide. The conditions for the preparation of Fe3O4 magnetic nanoparticles were optimized, and Fe3O4 magnetic nanoparticles obtained were characterized systematically by means of transmission electron microscope (TEM), dynamic laser scattering analyzer (DLS) and X-ray diffraction (XRD). The results revealed that the magnetic nanoparticles were cubic shaped and dispersive, with narrow size distribution and average diameter of 11.4 nm. It was found that the homogeneous variation of pH value in the solution via the control on the dropping rate of aqueous ammonia played a critical role in size distribution. The magnetic response of the product in the magnetic field was also analyzed and evaluated carefully. A 32.6 mT magnetic field which is produced by four ferromagnets was found to be sufficient to excite the dipole moments of 0.05 g Fe3O4 powder 2 cm far away from the ferromagnets. In conclusion, the Fe3O4 magnetic nanoparticles with excellent properties were competent for the magnetic carders of targeted-drug in future application.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C1003594 and NRF-2019R1A2C1003551)。
文摘Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.
基金the financial supports provided by the National Natural Science Foundation of China (Nos. 21971145, 21601108)the Taishan Scholar Project Foundation of Shandong Province (ts20190908)+1 种基金the Natural Science Foundation of Shandong Province (ZR2019MB024)Young Scholars Program of Shandong University (2017WLJH15)。
文摘Lithium-sulfur batteries(LSBs) are regarded as a competitive next-generation energy storage device.However, their practical performance is seriously restricted due to the undesired polysulfides shuttling.Herein, a multifunctional interlayer composed of paper-derived carbon(PC) scaffold, Fe3O4 nanoparticles,graphene, and graphite sheets is designed for applications in LSBs. The porous PC skeleton formed by the interweaving long-fibers not only facilitates fast transfer of Li ions and electrons but also provides a physical barrier for the polysulfide shuttling. The secondary Fe3O4@graphene component can reduce the polarization, boost the attachment of polysulfides, and promote the charging-discharging kinetics. The outer graphitic sheets layers benefit the interfacial electrochemistry and the utilization of S-containing species.The efficient obstruction of polysulfides diffusion is further witnessed via in situ ultraviolet-visible characterization and first-principles simulations. When 73% sulfur/commercial acetylene black is used as the cathode, the cell exhibits excellent capacity retention with high capacities at 0.5 C for 1000 cycles and even up to 10 C for 500 cycles, an ultrahigh rate capability up to 10 C(478 m Ah g-1), and a high arealsulfur loading of 8.05 mg cm-2. The strategy paves the way for developing multifunctional composites for LSBs with superior performance.
基金supported by the Tianjin Committee of Science and Technology (No.14JCZDJC32400)Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
文摘Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.
基金Funded by the National Natural Science Foundation of China(Nos.51403229,21401209,and U1507104)the Foundation of Youth Innovation Promotion Association,CAS(Y310031024)+1 种基金the Natural Science Foundation of Qinghai Province(2015-ZJ-933Q)the West Light Foundation of CAS
文摘Fe3O4-octadecyltrichlorosilane(Fe3O4-OTS)was synthesized and used to remove dyes in a competitive system.Fe3O4-OTS was prepared by slow hydrolysis of OTS in cyclohexane on the surface of Fe3O4obtained through coprecipitation method.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS),and contact angle analyzer(CA)were used to analyze the properties of Fe3O4-OTS.Methyl orange(MO)and methylene blue(MB)were selected as model molecules to study the influence mechanism of p H and ionic strength on competitive adsorption.The results of EDS and CA indicated that Fe3O4 was modified successfully with OTS on the surface.Silicon appeared and carbon content increased obviously on the surface of adsorbent.Contact angle of adsorbent increased from 0~o to 107~o after being modified by OTS.Fe3O4-OTS showed good separation for MO and MB in competitive system,which has potential to separate dyes in sewage.Separation factor(β~OB)changed from 18.724 to 0.017,when p H changed from 7 to 12,revealing that MO and MB could be separated almost thoroughly by Fe3O4-OTS.p H could change the surface charge of Fe3O4-OTS and structure of dyes,and thus change the interactions of competitive system indirectly.Even though hydrophobic interaction was enhanced,ionic strength reduced the difference of electrostatic interaction between dyes and Fe3O4-OTS.So it is unfavorable to separate dyes with opposite charges when ionic strength increases.These findings may provide theoretical guidances to separate two-component dye pollutants.
基金supported by International Cooperation and Exchange Program of the National Natural Science Foundation of China(No.51861145102)Science and Technology Program of Shenzhen(No.JCYJ20180302153928437)Fundamental Research Fund for the Central Universities(No.2042019kf0221)
文摘A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.
文摘Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration,interfacial tension(IFT)reduction,oil viscosity reduction,formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation.To the best of the authors’ knowledge,the synthesis of a new nanocomposite has been studied in this paper for the first time.It consists of nanoparticles of both SiO2 and Fe3O4.Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs.According to the previous studies,Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery.According to the experimental results,the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually.According to the results obtained for the use of this nanocomposite,understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475197,11575205,11404100,and 11304083)the Key Scientific and Technological Project of Henan Province,China(Grant No.102102210186)
文摘The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61771092 and 51202146)the Natural Science Foundation of Shanghai,China(Grant No.17ZR1419700)
文摘The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of an individual MNP shows a typical dipolar response.The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations.Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures,such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution.This is crucial for the development and application of magnetic nanostructures and devices.
基金supported by the Scientific Research Initiation Project of Fuzhou University for Thousand Talents Program Experts(0041-510248)the Science and Technology Development Fund of Fuzhou University(0041-510299)
文摘Antigens and antibodies can bind specifically, so antibiotic antibody shows potential biological and environmental applications on the removal of antibiotic. In the present study, novel antibody complex was synthesized from polyamide-amine dendrimer immobilized tetracycline(TC) antibody with the encapsulation of magnetic Fe3O4 nanoparticles. As-prepared magnetic Fe3O4-PAMAM-antibody complexes were characterized by different techniques such as Fourier transform infrared(FT-IR), X-ray diffraction(XRD), Nuclear magnetic resonance(NMR)and ultraviolet(UV) analysis spectra. The prepared antibody complexes exhibited high adsorption properties for TC from aqueous solutions. These results suggest that the antibody complex expects to be a potential candidate for the wastewater treatment.
基金the National Key Research and Development Program of China(Grant No.2018YFB0703500)the National Natural Science Foundation of China(Grant No.11704401).
文摘The lattice structures of epitaxial Fe3O4 films deposited on MgO were studied systematically using polarized Raman spectroscopy as a function of film thickness,where interesting phenomena were observed.Firstly,the spectral conflict to the Raman selection rules(RSRs)was observed under cross-sectional configuration,which can be attributed to the tetragonal deformation in the growth direction due to the lattice mismatch between Fe3O4 and MgO.Secondly,the blue shift and broadening of Raman peaks evidenced the decrease of the tensile strain in Fe3O4 films with decreasing thickness.Thirdly,distinct from the other Raman modes,the lowest T2g mode exhibited asymmetric lineshape,which can be interpreted using the spatial correlation model.The increased correlation length introduced in the model can well explain the enhanced peak asymmetry feature with decreasing thickness.These results provide useful information for understanding the lattice structure of epitaxial Fe3O4 film.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074040,11504192,11674187,11604172,and 51403114)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2012FZ006 and BS2014CL010)the China Postdoctoral Science Foundation(Grant Nos.2014M551868 and 2015M570570)
文摘A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.