In the present study,we investigated the intervention effects of a purified Polygonatum cyrtonema polysaccharide(PCP)on high-fat diet(HFD)-induced atherosclerosis in male and female LDLr-/-mice.Results showed that HFD...In the present study,we investigated the intervention effects of a purified Polygonatum cyrtonema polysaccharide(PCP)on high-fat diet(HFD)-induced atherosclerosis in male and female LDLr-/-mice.Results showed that HFD caused severe dyslipidemia,atherosclerotic lesions,oxidative damages and inflammation in male and female mice,and these effects seemed to be more pronounced in males than in females.However,the above variations could be dose-dependently reversed by PCP treatment,and the intervention effects on males were greater than those on females.Nuclear factor kappa-B(NF-κB),mitogen-activated protein kinase(MAPKs)and protein kinase B(Akt)are 3 pivotal signaling pathways mediating the development of atherosclerosis.Consistently,PCP was also found to significantly decrease the phosphorylation of p65,p38,extracellular-regulated kinase 1/2(ERK1/2)and Akt,and increase the protein expression of inhibitor of NF-κB(IκB)in the aortas of male and female mice induced by HFD.Taken together,these findings indicated that PCP could be effective for the prevention of atherosclerosis,and the intervention effect of PCP on male mice was more obvious than that of female mice.展开更多
Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath...Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.展开更多
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch...Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.展开更多
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were...Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional...The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.展开更多
Natural polysaccharides named PEP-0.1-1,PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study.Results showed that molecular weights of these polysaccharides were 3235,20...Natural polysaccharides named PEP-0.1-1,PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study.Results showed that molecular weights of these polysaccharides were 3235,2041 and 23933 Da,respectively.Further,structural characterization revealed that PEP-0.1-1 had a→4-α-D-Glcp-1→backbone and contained→4)-α-D-Glcp and→4)-β-D-Glcp reducing end groups.PEP-0-1 backbone contained→4-α-D-Glcp-1→and→6-α-3-O-Me-D-Galp-1→,and the side chains containedα-D-Glcp,β-D-Manp-1→andα-D-Glcp-3→.However,PEP-0-2 backbone consisted of→4-α-DGlcp-1→and→6-α-3-O-Me-D-Galp-(1→6)-α-D-Galp-1→while the side chains containedα-D-Glcp andβ-D-Manp-1→.Biological activity analysis was then carried out and found that all these polysaccharides could significantly suppress the relative mRNA expression of toll-like receptor 4,nitric oxide(NO),tumor necrosis factor-α,interleukin(IL)-1βand IL-6 in lipopolysaccharide(LPS)-induced inflammation of RAW264.7 cells,as well as the over secretion of the above cell cytokines.Moreover,Western blotting analysis revealed that all these purified fractions displayed significant inhibition effects on the expression of c-Jun N-terminal kinases protein induced by LPS in mitogen activated protein kinase pathway,along with the relieving on the inhibition effect of LPS on IκB-αprotein expression.In summary,the information generated by the present study could provide a theoretical basis for the exploration of novel healthy food materials from edible mushroom with antiinflammation activities.展开更多
Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulat...Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.展开更多
The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its ...The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.展开更多
The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes du...The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g).展开更多
Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesi...Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesity effect.However,the classification of golden-flower fungi is still controversial;the anti-obesity effect of golden-flower fungus polysaccharides remains unknown.In this study,we identify a golden-flower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis,which resolves the controversy of classification.Moreover,we find A.cristatus polysaccharides(ACPS)attenuate obesity in rats.ACPS modulate gut bacterial composition.in which Akkermansia,Akkermansia muciniphila,Bacteroides,Romboutsia,Blautia,and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum,hepatic,and fecal total bile acid content.Furthermore,ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity,according to a fecal transplantation experiment.Thus,ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.展开更多
Polygonatum sibiricum has been widely used due to its excellent biological activities.We prepared a novel polysaccharide from P.sibiricum(PSP)in this study.According a monosaccharide composition analysis,PSP was mainl...Polygonatum sibiricum has been widely used due to its excellent biological activities.We prepared a novel polysaccharide from P.sibiricum(PSP)in this study.According a monosaccharide composition analysis,PSP was mainly composed of fructose and glucose with a molar percentage of 93.81:5.12.The main linkage types were identified asα-D-Glcp-1→and→2-β-D-Fruf-1→.The molecular weight of PSP showed no significant change after simulated salivary and gastrointestinal digestion.However,PSP could be broken down by intestinal bacteria.Our findings revealed that PSP administration increased the abundance of probiotics such as Bifidobacterium.Furthermore,the results showed that gut microbes could utilize PSP to produce short-chain fatty acids including acetic acid,propionic acid,and butyric acid.Also,the PSP fermentation broth displayed an excellent scavenging effect on free radicals,including 2,2-diphenyl-1-picrylhydrazyl radical,superoxide radical,and hydroxyl radical.In summary,this study will help to promote the application of PSP as prebiotics in functional food and the medical industry.展开更多
Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the ...Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.展开更多
The present study reports the structural characteristics of 3 polysaccharide fractions(SPS-F1,SPS-F2 and SPS-F3)isolated and purified from squash.SPS-F1(molecular weight(Mw)=12.30 kDa)and SPS-F2(Mw=19.40 kDa)were like...The present study reports the structural characteristics of 3 polysaccharide fractions(SPS-F1,SPS-F2 and SPS-F3)isolated and purified from squash.SPS-F1(molecular weight(Mw)=12.30 kDa)and SPS-F2(Mw=19.40 kDa)were likely to contain HG and RG-I domain of pectic polysaccharide,respectively.SPS-F2(Mw=270.4 kDa)was mainly composed of rhamnose,galactose and arabinose.The treatment with SPS decreased body weight gain,glucose and TG levels in type 2 diabetes rats.Besides,25 differential metabolites were identified based on urinary metabolomics analysis,which are crucial to the anti-diabetic effect of SPS.The regulation of nicotinamide N-oxide,histamine,cis-aconitate,citrate,L-malic acid,3-(3-hydroxyphenyl)propanoic acid and N-acetyl-L-aspartic acid were mainly associated with energy metabolism,gut microbiota and inflammation.Study of surface plasmon resonance revealed the binding kinetics with galectin-3(Gal-3)and fibroblast growth factor 2(FGF2).The K_(D)values of SPS-F2 and SPS-F3 to Gal-3 were 4.97×10^(-3)and 1.48×10^(-3)mol/L,indicating a weak binding affinity.All 3 fractions showed moderate binding to FGF2 and the affinity was SPS-F3>SPS-F2>SPS-F1.Thus,the metabolomics and SPR approach were proved to be a promising tool in exploring the anti-diabetes effects of SPS and provided a deep understanding of the mechanisms.展开更多
This study demonstrates the feasibility of producing three polysaccharides(neutral LJP-1,acidic LJP-2 and acidic LJP-3)with significant in vitro and in vivo anti-inflammatory activities from the flowers of Lonicera ja...This study demonstrates the feasibility of producing three polysaccharides(neutral LJP-1,acidic LJP-2 and acidic LJP-3)with significant in vitro and in vivo anti-inflammatory activities from the flowers of Lonicera japonica.The three polysaccharides differed in chemical composition,molecular weight(Mw)distribution,glycosidic linkage pattern,functional groups and morphology.They exhibited excellent protective effects(in a dose-dependent manner)in lipopolysaccharide-injured RAW264.7 macrophages and Cu SO4-damaged zebrafish via reducing NO production and inhibiting the overexpressions of inflammation-related transcription factors,inflammatory proteins and cytokines in the NF-κB/MAPK signaling pathways.Their antiinflammatory effects varied owing to their different molecular characteristics and chemical compositions.Overall,LJP-2 at 400μg/m L was the most effective.LJP-2 consisted mainly of→5)-α-L-Araf(1→,→4)-α-LGalp A(1→and→2)-α-L-Rhap(1→residues with terminal T-β-D-Glcp.Thus,honeysuckle flowers are good sources of anti-inflammatory polysaccharides,and precise fractionation enables the production of potent antiinflammatory agents for the development of functional foods and healthcare products.展开更多
Objective:To evaluate the effect of Grifola frondosa polysaccharides(GFP)in a rat model of Alzheimer’s disease(AD).Methods:Seventy-five rats were divided into five groups:the normal control group and the AD group tre...Objective:To evaluate the effect of Grifola frondosa polysaccharides(GFP)in a rat model of Alzheimer’s disease(AD).Methods:Seventy-five rats were divided into five groups:the normal control group and the AD group treated with or without GFP(100,200,and 400 mg/kg).Behavioral responses in the open field test and elevated plus maze test were assessed.Additionally,the levels of malondialdehyde and ferric-reducing ability of plasma,and the mRNA expressions of TNF-α,IL-6,and IL-1βin the hippocampus were measured.Results:Treatment with GFP significantly improved AD-induced behavioral changes in the open field test and elevated plus maze test(P<0.05).In addition,the level of malondialdehyde and the mRNA expressions of TNF-α,IL-6,and IL-1βwere decreased by GFP treatment in a dose-dependent manner in AD rats(P<0.05),while the level of ferric-reducing ability of plasma was significantly increased(P<0.05).Conclusions:Oral administration of GFP can reduce inflammation and oxidative stress,as well as improve behavioral responses associated with AD,suggesting its potential use in AD treatment.However,additional studies are needed to elucidate its underlying mechanisms and efficacy.展开更多
Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-t...Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-treatment with SP at a dosage of 400 mg/kg·day alleviated colitis symptoms,preventing the weight loss and colon shorten.SP suppressed DSS-induced inflammatory response and enhanced M1 to M2 macrophage polarization.Further investigation showed that SP significantly promoted the regeneration of crypt and the expansion of goblet cell production.In addition,bacterial 16S rRNA sequencing analysis showed that SP modulated the composition of fecal microbiota,including selectively increasing Lactobacillus relative abundance.Notably,SP treatment enriched the production of Lactobacillus-derived lactic acid,which was sensed by its specific G-protein-coupled receptor 81(Gpr81)/Wnt3/β-catenin signaling,and promoted the regeneration of intestinal stem cells.Fecal microbiome transplantation demonstrated that intestinal flora partially contributed to the beneficial effects of SP on preventing against colitis.In conclusion,SP exhibited the protective effects against colitis,which could be partly associated with modulating the composition of gut microbiota and enrichment of lactic acid.This study suggests that SP has potential to be developed as nutritional intervention to prevent colitis.展开更多
Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunb...Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.展开更多
This study aimed to explore the protective effect and potential mechanism of Nostoc commune Vauch.polysaccharide(NCVP)on lead(Pb)-poisoning mice.NCVP improved Pb-induced hepatorenal toxicity and inflammatory responses...This study aimed to explore the protective effect and potential mechanism of Nostoc commune Vauch.polysaccharide(NCVP)on lead(Pb)-poisoning mice.NCVP improved Pb-induced hepatorenal toxicity and inflammatory responses and modulated key indicators of antioxidant capacity.Moreover,the down-regulation of critical proteins of the Nrf2 pathway induced by Pb could be reversed after NCVP intervention.In addition,NCVP maintained the diversity of gut bacteriobiota and restored the relative abundance of f_Prevotellaceae,g_Alloprevotella,and f_Eubacterium_coprostanoligenes_group reduced by Pb.Also,NCVP regulated the diversity and abundance of gut mycobiota affected by Pb.Specifically,Pb decreased the proportion of pathogenic species(g_Fusarium,p_Basidiomycota,g_Alternaria,g_Aspergillus,and g_Candida)while NCVP increased the abundance of probiotics species(g_Kazachstania and p_Ascomycota).Furthermore,the metabolomic analysis found that NCVP significantly altered a range of microbial metabolites,including porphobilinogen,cromakalim,salidroside,and trichostatin A,which has significant associations with specific gut bacteriobiota or mycobiota.These altered metabolites are involved in primary bile acid biosynthesis,metabolism of xenobiotics by cytochrome P450,lysine degradation,and other metabolic pathways.Overall,our findings indicate that NCVP might be an excellent natural product for eliminating Pb-induced hepatorenal toxicity,possibly by regulating gut bacteriome,mycobiome and metabolome.展开更多
基金financially supported by the National Natural Science Foundation of China(32072176,31271814)the Outstanding Youth Funds of Anhui Province(2208085J31)the Fundamental Research Funds for the Central Universities(JZ2022HGQA0232,JZ2022HGTA0316)。
文摘In the present study,we investigated the intervention effects of a purified Polygonatum cyrtonema polysaccharide(PCP)on high-fat diet(HFD)-induced atherosclerosis in male and female LDLr-/-mice.Results showed that HFD caused severe dyslipidemia,atherosclerotic lesions,oxidative damages and inflammation in male and female mice,and these effects seemed to be more pronounced in males than in females.However,the above variations could be dose-dependently reversed by PCP treatment,and the intervention effects on males were greater than those on females.Nuclear factor kappa-B(NF-κB),mitogen-activated protein kinase(MAPKs)and protein kinase B(Akt)are 3 pivotal signaling pathways mediating the development of atherosclerosis.Consistently,PCP was also found to significantly decrease the phosphorylation of p65,p38,extracellular-regulated kinase 1/2(ERK1/2)and Akt,and increase the protein expression of inhibitor of NF-κB(IκB)in the aortas of male and female mice induced by HFD.Taken together,these findings indicated that PCP could be effective for the prevention of atherosclerosis,and the intervention effect of PCP on male mice was more obvious than that of female mice.
基金The current project is funded by Shandong Provincial Natural Science Foundation,China(ZR2020MH370)Major Science and Technology Innovation in Shandong Province(2017CXGC1307)Ji’nan Science and Technology Project(201303055)。
文摘Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.
基金supported by the Province Natural Science Foundation of Hunan,China (2022JJ5410)Special Project on Modern Agricultural Industrial Technology System Construction of Hunan,China (2022-67)。
文摘Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.
基金supported by grants from the National Key R&D Program of China(2019YFC1606701)。
文摘Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the National Natural Science Foundation of China(82371032,82070923)the Major Basic Research Project of the Natural Science Foundation of Shandong Province(ZR2023ZD60)+1 种基金the Taishan Scholar Program(20231255)the Academic Promotion Program of Shandong First Medical University(2019RC009).
文摘The eye,a complex organ isolated from the systemic circulation,presents significant drug delivery challenges owing to its protective mechanisms,such as the blood-retinal barrier and corneal impermeability.Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance.Polysaccharidebased microneedles(PSMNs)have emerged as a transformative solution for ophthalmic drug delivery.However,a comprehensive review of PSMNs in ophthalmology has not been published to date.In this review,we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery.We provide a thorough analysis of PSMNs,summarizing the design principles,fabrication processes,and challenges addressed during fabrication,including improving patient comfort and compliance.We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios.Finally,we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
基金supported by the National Natural Science Foundation of China(31901623)Major Public Welfare Projects in Henan Province(201300110200)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Natural polysaccharides named PEP-0.1-1,PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study.Results showed that molecular weights of these polysaccharides were 3235,2041 and 23933 Da,respectively.Further,structural characterization revealed that PEP-0.1-1 had a→4-α-D-Glcp-1→backbone and contained→4)-α-D-Glcp and→4)-β-D-Glcp reducing end groups.PEP-0-1 backbone contained→4-α-D-Glcp-1→and→6-α-3-O-Me-D-Galp-1→,and the side chains containedα-D-Glcp,β-D-Manp-1→andα-D-Glcp-3→.However,PEP-0-2 backbone consisted of→4-α-DGlcp-1→and→6-α-3-O-Me-D-Galp-(1→6)-α-D-Galp-1→while the side chains containedα-D-Glcp andβ-D-Manp-1→.Biological activity analysis was then carried out and found that all these polysaccharides could significantly suppress the relative mRNA expression of toll-like receptor 4,nitric oxide(NO),tumor necrosis factor-α,interleukin(IL)-1βand IL-6 in lipopolysaccharide(LPS)-induced inflammation of RAW264.7 cells,as well as the over secretion of the above cell cytokines.Moreover,Western blotting analysis revealed that all these purified fractions displayed significant inhibition effects on the expression of c-Jun N-terminal kinases protein induced by LPS in mitogen activated protein kinase pathway,along with the relieving on the inhibition effect of LPS on IκB-αprotein expression.In summary,the information generated by the present study could provide a theoretical basis for the exploration of novel healthy food materials from edible mushroom with antiinflammation activities.
基金funded by the Shandong Provincial Key Research and Development Program(No.2019GSF107031).
文摘Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.
基金the financial supports by the National Natural Science Foundation of China(82060594)the Natural Science Foundation of Jiangxi Province,China(20202BAB205006)。
文摘The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.
基金the Science and Technology Planning Project in FujianChina(No.2015N0010)+1 种基金the Science and Technology Planning Project in XiamenChina(No.3502Z20143017)。
文摘The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g).
基金financially supported by Natural Science Foundation of China (32002095 and 32172217)Major Project of Science and Technology of Guangxi Zhuang Autonomous Region (AA20302018)+4 种基金Key Research and Development Program of Hunan Province (2020WK2017)Hunan“Three Top”Innovative Talents Project (2022RC1142)Natural Science Foundation of Hunan Province for Outstanding Young Scholars (2022JJ20028)Training Program for Excellent Young Innovators of Changsha (kq2107015)Scientific Research Fund of the Hunan Provincial Education Department (20A241)。
文摘Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesity effect.However,the classification of golden-flower fungi is still controversial;the anti-obesity effect of golden-flower fungus polysaccharides remains unknown.In this study,we identify a golden-flower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis,which resolves the controversy of classification.Moreover,we find A.cristatus polysaccharides(ACPS)attenuate obesity in rats.ACPS modulate gut bacterial composition.in which Akkermansia,Akkermansia muciniphila,Bacteroides,Romboutsia,Blautia,and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum,hepatic,and fecal total bile acid content.Furthermore,ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity,according to a fecal transplantation experiment.Thus,ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.
基金supported by Department of Science and Technology of Hubei Province(2021CFA014)Major Science and Technology Project in Yunnan Province(202102AE090042)+2 种基金Educational Commission of Hubei Province of China(D20212003)Knowledge Innovation Program of Wuhan-Shuguang Project(2022020801010420)Health Commission of Hubei Province of China(ZY2021Z005,ZY2019Q003).
文摘Polygonatum sibiricum has been widely used due to its excellent biological activities.We prepared a novel polysaccharide from P.sibiricum(PSP)in this study.According a monosaccharide composition analysis,PSP was mainly composed of fructose and glucose with a molar percentage of 93.81:5.12.The main linkage types were identified asα-D-Glcp-1→and→2-β-D-Fruf-1→.The molecular weight of PSP showed no significant change after simulated salivary and gastrointestinal digestion.However,PSP could be broken down by intestinal bacteria.Our findings revealed that PSP administration increased the abundance of probiotics such as Bifidobacterium.Furthermore,the results showed that gut microbes could utilize PSP to produce short-chain fatty acids including acetic acid,propionic acid,and butyric acid.Also,the PSP fermentation broth displayed an excellent scavenging effect on free radicals,including 2,2-diphenyl-1-picrylhydrazyl radical,superoxide radical,and hydroxyl radical.In summary,this study will help to promote the application of PSP as prebiotics in functional food and the medical industry.
基金funded by the National Nature Science Foundation of China(32002196)。
文摘Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
基金supported by the National Natural Science Foundation of China(32122069 and 31972191)the Beijing Outstanding Young Scientist Program(BJJWZYJH01201910011025)funded by National Institutes of Health Grants DK111958 and AG062344 to R.J.L.
文摘The present study reports the structural characteristics of 3 polysaccharide fractions(SPS-F1,SPS-F2 and SPS-F3)isolated and purified from squash.SPS-F1(molecular weight(Mw)=12.30 kDa)and SPS-F2(Mw=19.40 kDa)were likely to contain HG and RG-I domain of pectic polysaccharide,respectively.SPS-F2(Mw=270.4 kDa)was mainly composed of rhamnose,galactose and arabinose.The treatment with SPS decreased body weight gain,glucose and TG levels in type 2 diabetes rats.Besides,25 differential metabolites were identified based on urinary metabolomics analysis,which are crucial to the anti-diabetic effect of SPS.The regulation of nicotinamide N-oxide,histamine,cis-aconitate,citrate,L-malic acid,3-(3-hydroxyphenyl)propanoic acid and N-acetyl-L-aspartic acid were mainly associated with energy metabolism,gut microbiota and inflammation.Study of surface plasmon resonance revealed the binding kinetics with galectin-3(Gal-3)and fibroblast growth factor 2(FGF2).The K_(D)values of SPS-F2 and SPS-F3 to Gal-3 were 4.97×10^(-3)and 1.48×10^(-3)mol/L,indicating a weak binding affinity.All 3 fractions showed moderate binding to FGF2 and the affinity was SPS-F3>SPS-F2>SPS-F1.Thus,the metabolomics and SPR approach were proved to be a promising tool in exploring the anti-diabetes effects of SPS and provided a deep understanding of the mechanisms.
基金supported by Key R&D Program of Shandong Province,China(2021CXGC010508)。
文摘This study demonstrates the feasibility of producing three polysaccharides(neutral LJP-1,acidic LJP-2 and acidic LJP-3)with significant in vitro and in vivo anti-inflammatory activities from the flowers of Lonicera japonica.The three polysaccharides differed in chemical composition,molecular weight(Mw)distribution,glycosidic linkage pattern,functional groups and morphology.They exhibited excellent protective effects(in a dose-dependent manner)in lipopolysaccharide-injured RAW264.7 macrophages and Cu SO4-damaged zebrafish via reducing NO production and inhibiting the overexpressions of inflammation-related transcription factors,inflammatory proteins and cytokines in the NF-κB/MAPK signaling pathways.Their antiinflammatory effects varied owing to their different molecular characteristics and chemical compositions.Overall,LJP-2 at 400μg/m L was the most effective.LJP-2 consisted mainly of→5)-α-L-Araf(1→,→4)-α-LGalp A(1→and→2)-α-L-Rhap(1→residues with terminal T-β-D-Glcp.Thus,honeysuckle flowers are good sources of anti-inflammatory polysaccharides,and precise fractionation enables the production of potent antiinflammatory agents for the development of functional foods and healthcare products.
文摘Objective:To evaluate the effect of Grifola frondosa polysaccharides(GFP)in a rat model of Alzheimer’s disease(AD).Methods:Seventy-five rats were divided into five groups:the normal control group and the AD group treated with or without GFP(100,200,and 400 mg/kg).Behavioral responses in the open field test and elevated plus maze test were assessed.Additionally,the levels of malondialdehyde and ferric-reducing ability of plasma,and the mRNA expressions of TNF-α,IL-6,and IL-1βin the hippocampus were measured.Results:Treatment with GFP significantly improved AD-induced behavioral changes in the open field test and elevated plus maze test(P<0.05).In addition,the level of malondialdehyde and the mRNA expressions of TNF-α,IL-6,and IL-1βwere decreased by GFP treatment in a dose-dependent manner in AD rats(P<0.05),while the level of ferric-reducing ability of plasma was significantly increased(P<0.05).Conclusions:Oral administration of GFP can reduce inflammation and oxidative stress,as well as improve behavioral responses associated with AD,suggesting its potential use in AD treatment.However,additional studies are needed to elucidate its underlying mechanisms and efficacy.
基金funded by National Natural Science Foundation of China(NSFC32372350)the Knowledge Innovation Program Funding of Institute of Food Science and Technology(CAASASTIP2021-IFST)+1 种基金China Agriculture Research System(CARS-04)Agricultural Science and Technology Innovation Program of Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences(CAAS-ASTIP-G2022-IFST-06).
文摘Soy polysaccharide(SP)has been reported to possess the properties of modulating gut microbiome diversity.Here,we aimed to explore the protective effects of SP against dextran sulphate sodium(DSS)-induced colitis.Pre-treatment with SP at a dosage of 400 mg/kg·day alleviated colitis symptoms,preventing the weight loss and colon shorten.SP suppressed DSS-induced inflammatory response and enhanced M1 to M2 macrophage polarization.Further investigation showed that SP significantly promoted the regeneration of crypt and the expansion of goblet cell production.In addition,bacterial 16S rRNA sequencing analysis showed that SP modulated the composition of fecal microbiota,including selectively increasing Lactobacillus relative abundance.Notably,SP treatment enriched the production of Lactobacillus-derived lactic acid,which was sensed by its specific G-protein-coupled receptor 81(Gpr81)/Wnt3/β-catenin signaling,and promoted the regeneration of intestinal stem cells.Fecal microbiome transplantation demonstrated that intestinal flora partially contributed to the beneficial effects of SP on preventing against colitis.In conclusion,SP exhibited the protective effects against colitis,which could be partly associated with modulating the composition of gut microbiota and enrichment of lactic acid.This study suggests that SP has potential to be developed as nutritional intervention to prevent colitis.
基金supported by Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(20220488)。
文摘Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.
基金supported by the Program of the National Natural Science Foundation of China(31872519)General Project of Jilin Provincial Department of Science and Technology(20230101247JC)the Open Research Fund of Engineering Research Center of Bioreactor and Pharmaceutical Development,Ministry of Education.(KF202002).
文摘This study aimed to explore the protective effect and potential mechanism of Nostoc commune Vauch.polysaccharide(NCVP)on lead(Pb)-poisoning mice.NCVP improved Pb-induced hepatorenal toxicity and inflammatory responses and modulated key indicators of antioxidant capacity.Moreover,the down-regulation of critical proteins of the Nrf2 pathway induced by Pb could be reversed after NCVP intervention.In addition,NCVP maintained the diversity of gut bacteriobiota and restored the relative abundance of f_Prevotellaceae,g_Alloprevotella,and f_Eubacterium_coprostanoligenes_group reduced by Pb.Also,NCVP regulated the diversity and abundance of gut mycobiota affected by Pb.Specifically,Pb decreased the proportion of pathogenic species(g_Fusarium,p_Basidiomycota,g_Alternaria,g_Aspergillus,and g_Candida)while NCVP increased the abundance of probiotics species(g_Kazachstania and p_Ascomycota).Furthermore,the metabolomic analysis found that NCVP significantly altered a range of microbial metabolites,including porphobilinogen,cromakalim,salidroside,and trichostatin A,which has significant associations with specific gut bacteriobiota or mycobiota.These altered metabolites are involved in primary bile acid biosynthesis,metabolism of xenobiotics by cytochrome P450,lysine degradation,and other metabolic pathways.Overall,our findings indicate that NCVP might be an excellent natural product for eliminating Pb-induced hepatorenal toxicity,possibly by regulating gut bacteriome,mycobiome and metabolome.