In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea gran...Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.展开更多
Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of...Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of urea nitrogen and the degrading velocity of the drape can be controlled by regulating the thicknesses of drapes, the amount of konjac flour and the water content. In addition, the biodegradability of the drape was investigated by burying the specimens in earth afterwards,and results show this drape can be degraded naturally.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr...Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.展开更多
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio...Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.展开更多
Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))w...Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.展开更多
A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-bu...A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-butanediol(BDO) and trimethylolpropane(TMP) as the main materials.The effects of the NCO/OH ratio on the emulsion and film properties of NWPU were explored.The experimental results show that the NWPU prepared at an NCO/OH ratio of 1.1 has good emulsion stability and easy film formation,and the resultant film was elastic,soft,and transparent.The sample was used for wool finishing and the application performance was evaluated.When the NWPU dosage reached 40 g·L^(-1),the fabric area felt shrinkage rate reduced from 8.97% to 4.75%,the pilling rating raised from grade 2-3 to grade 4,and the whiteness value only decreased by 3.87%.展开更多
Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based ...Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based crystal phases of Ni_(2)P and NiF_(2) are developed via fluorination and phosphorization of Ni coated carbon nanofiber(Ni_(2)P/NiF_(2)/PCNF),which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution.This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity,difficulty in active site formation,and insufficient synergism.A considerably high current density of 254.29 mA cm^(-2) is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode,and the cell voltage requires 1.39 V to get 10 mA cm^(-2) in hydrogen generation,with very good stability,about 190 mV less than that of the traditional water electrolysis.The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface,where the urea molecules tend to bond with Ni atoms on the surface of heterojunction,and the rate-determining step is changed from CO_(2) desorption to the fourth H-atom deprotonation.The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for...BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we rep...Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we report a continuous-flow electrolyzer equipped with 9-square centime-ter-effective area gas diffusion electrodes(GDE)which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO_(2) and nitrate in the cathode region,producing oxalic acid and urea at both the anode and cathode,respectively.The current density at low cell voltage(0.9 V)remained above 18.7 mA cm^(-2) for 10 consecutive electrolysis cycles(120 h in total),and the Faraday efficiency of oxalic acid(67.1%) and urea(70.9%)did not decay.Experimental and theoretical studies show that in terms of the formation of C-N bond at the cathode,Pd-sites can provide protons for the hydrogenation process of CO_(2) and NO_(3)^(-),Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH.In addition,in terms of glycerol oxidation,the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C-C bond in glycerol molecules,respectively.展开更多
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t...Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a partic...Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a particle size of approximately 200 nm was successfully prepared and incorporated into waterborne polyurethane(WPU).The tribological properties of the coatings were determined using a controlled-atmosphere tribometer(WMT-2E)under dry-friction conditions.Following the friction test,the friction mechanism was investigated by characterizing the abrasive spot surfaces of the test samples using 3D laser microscopy and scanning electron microscopy/energy dispersive spectrometer.The final results demonstrated that the thermal stability of WPU composite coatings containing various concentrations of OLC nanoparticles was significantly enhanced,binding forces between coatings and steel sheets increased,and hardness improved compared to pure WPU coatings.Tribological tests revealed a notable enhancement in the anti-wear properties of WPU coatings due to the presence of OLC particles.Specifically,the wear rate of the 1.5%OLC/WPU coating was reduced by 45.3%.The coating’s anti-wear mechanism was attributed to the improvement in the mechanical properties of WPU due to OLC,as well as OLC’s participation in the formation of a transfer film under induced friction,which protected the matrix.展开更多
In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helico...In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金the National Key Technology R&D Program of the 11th Five-Year Period (No.2006BAD10B08)
文摘Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.
文摘Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of urea nitrogen and the degrading velocity of the drape can be controlled by regulating the thicknesses of drapes, the amount of konjac flour and the water content. In addition, the biodegradability of the drape was investigated by burying the specimens in earth afterwards,and results show this drape can be degraded naturally.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University.
文摘Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
基金supported by the National Natural Science Foundation of China(No.22209126)。
文摘Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.
基金Project(42076039)supported by the National Natural Science Foundation of ChinaProject(ZR2020ME016)supported by the Natural Science Foundation of Shandong Province,ChinaProject(202165004)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.
文摘A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-butanediol(BDO) and trimethylolpropane(TMP) as the main materials.The effects of the NCO/OH ratio on the emulsion and film properties of NWPU were explored.The experimental results show that the NWPU prepared at an NCO/OH ratio of 1.1 has good emulsion stability and easy film formation,and the resultant film was elastic,soft,and transparent.The sample was used for wool finishing and the application performance was evaluated.When the NWPU dosage reached 40 g·L^(-1),the fabric area felt shrinkage rate reduced from 8.97% to 4.75%,the pilling rating raised from grade 2-3 to grade 4,and the whiteness value only decreased by 3.87%.
基金The work was supported by the National Natural Science Foundation of China(22272148,21972124)Chun Yin thanks the support of Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_3720).
文摘Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based crystal phases of Ni_(2)P and NiF_(2) are developed via fluorination and phosphorization of Ni coated carbon nanofiber(Ni_(2)P/NiF_(2)/PCNF),which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution.This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity,difficulty in active site formation,and insufficient synergism.A considerably high current density of 254.29 mA cm^(-2) is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode,and the cell voltage requires 1.39 V to get 10 mA cm^(-2) in hydrogen generation,with very good stability,about 190 mV less than that of the traditional water electrolysis.The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface,where the urea molecules tend to bond with Ni atoms on the surface of heterojunction,and the rate-determining step is changed from CO_(2) desorption to the fourth H-atom deprotonation.The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金Supported by Scientific Initiation Scholarship Programme(PIBIC)of the Bahia State Research Support Foundationthe Doctorate Scholarship Program of the Coordination of Improvement of Higher Education Personnel+1 种基金the Scientific Initiation Scholarship Programme(PIBIC)of the National Council for Scientific and Technological Developmentand the CNPq Research Productivity Fellowship.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
文摘Urea and oxalic acid are critical component in various chemical manufacturing industries.However,achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge.Herein,we report a continuous-flow electrolyzer equipped with 9-square centime-ter-effective area gas diffusion electrodes(GDE)which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO_(2) and nitrate in the cathode region,producing oxalic acid and urea at both the anode and cathode,respectively.The current density at low cell voltage(0.9 V)remained above 18.7 mA cm^(-2) for 10 consecutive electrolysis cycles(120 h in total),and the Faraday efficiency of oxalic acid(67.1%) and urea(70.9%)did not decay.Experimental and theoretical studies show that in terms of the formation of C-N bond at the cathode,Pd-sites can provide protons for the hydrogenation process of CO_(2) and NO_(3)^(-),Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH.In addition,in terms of glycerol oxidation,the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C-C bond in glycerol molecules,respectively.
基金supported by the Vietnam National University,Ho Chi Minh City (Grant No.TX2024-50-01)partial supported by National Natural Science Foundation of China (Grant No.22209186)。
文摘Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
基金The financial support received from the National Natural Science Foundation of China (52075144)the Anhui Province Natural Science Foundation of China (2008085ME167)+4 种基金the Anhui University Outstanding Young Talents Programs (gxyqZD2020051)The Talent Research Fund of Hefei University (21-22RC33)the Open Project of Anhui Province Engineering Laboratory of Intelligent Demolition Equipment (APELIDE2021B003)the Open Project of Anhui Province Key Laboratory of Critical Friction Pair for Advanced Equipment (LCFP-2404)the Excellent Scientific Research and Innovation Team of Anhui University (2022AH010096)
文摘Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a particle size of approximately 200 nm was successfully prepared and incorporated into waterborne polyurethane(WPU).The tribological properties of the coatings were determined using a controlled-atmosphere tribometer(WMT-2E)under dry-friction conditions.Following the friction test,the friction mechanism was investigated by characterizing the abrasive spot surfaces of the test samples using 3D laser microscopy and scanning electron microscopy/energy dispersive spectrometer.The final results demonstrated that the thermal stability of WPU composite coatings containing various concentrations of OLC nanoparticles was significantly enhanced,binding forces between coatings and steel sheets increased,and hardness improved compared to pure WPU coatings.Tribological tests revealed a notable enhancement in the anti-wear properties of WPU coatings due to the presence of OLC particles.Specifically,the wear rate of the 1.5%OLC/WPU coating was reduced by 45.3%.The coating’s anti-wear mechanism was attributed to the improvement in the mechanical properties of WPU due to OLC,as well as OLC’s participation in the formation of a transfer film under induced friction,which protected the matrix.
文摘In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.