In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ...In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.展开更多
Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA ...Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA hydrogel. The composite hydrogel has excellent conductive properties and high strain sensitivity, making it suitable for motion monitoring. The PVA/ZnO conductive hydrogel is tested on various body parts, showing effective feedback on movement changes and good electrical signal output effects for different motion degrees, confirming its feasibility in flexible sensors. The sensor exhibits good mechanical properties, electrical conductivity, and tensile strain sensing performance, making it a promising sensor material. It can accurately monitor wrist bending, finger deformation, bending, and large-scale joint movements due to its wide monitoring range and recoverable strain. The results show that the PVA/ZnO conductive hydrogel can provide effective feedback in flexible sensors, which is suitable for use in motion monitoring.展开更多
Al<sub>2</sub>O<sub>3</sub>/PVFM/Al<sub>2</sub>O<sub>3</sub> trilayer membranes are prepared by means of simple coating of PVA-Al<sub>2</sub>O<sub>3<...Al<sub>2</sub>O<sub>3</sub>/PVFM/Al<sub>2</sub>O<sub>3</sub> trilayer membranes are prepared by means of simple coating of PVA-Al<sub>2</sub>O<sub>3</sub> solution onto both sides of PVFM thin membranes, which is prepared via phase inversion method. The characteristics of the trilayer membranes and gel polymer electrolytes are investigated using FESEM, tensile testing apparatus, thermal shrinkage test, EIS and charge-discharge test. When inorganic Al<sub>2</sub>O<sub>3</sub> particles are used to coat the PVFM membrane, drawbacks associated with gel-type membranes, namely, poor mechanical strength and thermal stability are greatly improved. Lithium ion cell with the Al<sub>2</sub>O<sub>3</sub>/PVFM/Al<sub>2</sub>O<sub>3</sub> based GPE matched with LiFePO<sub>4</sub> shows excellent electrochemical performance.展开更多
基金supported by the National Science and Technology Planning Project (No.2011BAC08B00)the National High Technology Research and Development Program of China (863 Program)(No.2012AA03A611)
文摘In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.
文摘Flexible sensors have great potential for monitoring human body motion signals. This paper presents a flexible sensor that uses zinc oxide (ZnO) to improve the mechanical properties and electrical conductivity of PVA hydrogel. The composite hydrogel has excellent conductive properties and high strain sensitivity, making it suitable for motion monitoring. The PVA/ZnO conductive hydrogel is tested on various body parts, showing effective feedback on movement changes and good electrical signal output effects for different motion degrees, confirming its feasibility in flexible sensors. The sensor exhibits good mechanical properties, electrical conductivity, and tensile strain sensing performance, making it a promising sensor material. It can accurately monitor wrist bending, finger deformation, bending, and large-scale joint movements due to its wide monitoring range and recoverable strain. The results show that the PVA/ZnO conductive hydrogel can provide effective feedback in flexible sensors, which is suitable for use in motion monitoring.
文摘Al<sub>2</sub>O<sub>3</sub>/PVFM/Al<sub>2</sub>O<sub>3</sub> trilayer membranes are prepared by means of simple coating of PVA-Al<sub>2</sub>O<sub>3</sub> solution onto both sides of PVFM thin membranes, which is prepared via phase inversion method. The characteristics of the trilayer membranes and gel polymer electrolytes are investigated using FESEM, tensile testing apparatus, thermal shrinkage test, EIS and charge-discharge test. When inorganic Al<sub>2</sub>O<sub>3</sub> particles are used to coat the PVFM membrane, drawbacks associated with gel-type membranes, namely, poor mechanical strength and thermal stability are greatly improved. Lithium ion cell with the Al<sub>2</sub>O<sub>3</sub>/PVFM/Al<sub>2</sub>O<sub>3</sub> based GPE matched with LiFePO<sub>4</sub> shows excellent electrochemical performance.