Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide...Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.展开更多
To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the ...To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 +O2). When the volume ratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM). The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT) tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.展开更多
Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30...Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functiona...Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.展开更多
The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When...The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.展开更多
By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain...By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain experiences the melting state, elastic state and glass state and the conformations can be characterized by the increases of the trans-state of C--C--C--C and the near gauche-state of C--C--C--C1 with the decrease of temperature. It is found that the transition of the conformations is driven mainly by the Coulomb interaction between chain segments.展开更多
The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysi...The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysis (EMP). This experiment was performed in a scanning electron microscope attached to an energy dispersive X-ray analyzer. Differential scanning calorimetry was also used to investigate the phase separation of the blends. The results show that PVC and PS are incompatible and the blends have sea-islands phase structures. Blends prepared via melt mixing have finer phase-dispersion than those prepared via solution casting.展开更多
The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean an...The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.展开更多
The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experim...The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.展开更多
A novel type of thermal stabilizer-lanthanum tris (mono- i -octyl phthalate) (LTMP) was synthesized by double-decomposition reaction o f sodium mono- i -octyl phthalate with lanthanum chloride at 60 ℃. Sodium m ono- ...A novel type of thermal stabilizer-lanthanum tris (mono- i -octyl phthalate) (LTMP) was synthesized by double-decomposition reaction o f sodium mono- i -octyl phthalate with lanthanum chloride at 60 ℃. Sodium m ono- i -octyl phthalate was prepared by sodium hydrate and mono- i -octy l phthalate prepared by reaction of isooctyl alcohol and phthalic anhydride in th e presence of sulfuric acid catalyst at 110 ℃. The yield of lanthanum tris (mon o- i -octyl phthalate) is about 84.5%. Its thermal stabilities were measured by heat-ageing oven test when incorporated into PVC. The experimental results show that the heat stability time is about 40min at 190 ℃ when adding 3phr (pe r hundred resin) to PVC. The thermal stability of this product is better than th at of Ca-Zn complex and basic lead salt stabilizers, and equal to that of dibut yltin dilaurate.展开更多
Antimony mercaplde heat stabilizer for polyvinyl chlorideis synthesized from antimony trioxide and mercaptocarboxylic acid esters, HS(CH2).COoi-C8H17 (n=1~2) at 100~115 C In the presence of 0. 5%~1 % an organic aci...Antimony mercaplde heat stabilizer for polyvinyl chlorideis synthesized from antimony trioxide and mercaptocarboxylic acid esters, HS(CH2).COoi-C8H17 (n=1~2) at 100~115 C In the presence of 0. 5%~1 % an organic acid catalyst. Some physicochemicalconstants of the compounds, such as density and refractive index, aredetermined. The complexes are hydrolabll in aqueous solutions andthe bond of Sb-S is weaker than that of Sb-o. The forming bondproperty of antimony tris (mercaptoacid ester ) has been elucidatedby measurement of infrared spectra in comparison with mercaptocarboxylic acid esters. The polyvinyl chloride resins containing antimony mercaptide heat stabilizers, do not darken at elevated temperatures and exhibit a high degree of stability. It is proposed that mercaptocarboxylic acid ester freeradicals can esterify PVC microradicals at carbon atoms with upaired electrons.展开更多
This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but ...This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.展开更多
Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms ...Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.展开更多
Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher speci...Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher specific surface areas and the presence of additives which can more easily leach.How original NPs and aged NPs affect plant growth has not been widely investigated.This work chose polyvinyl chloride NPs(PVC-NPs)that were subjected to up to 1000 h UV light radiation to explore the impact of PVC-NPs on the growth of pea seedlings(Pisum Sativum L.).The results indicated the existence of PVC-NPs with longer UV light radiation time and higher concentrations had more negative influences on pea seedlings’growth such as germination rate(decreased by 10.6%–22.5%),stem length(decreased by 2.8%–8.1%),dry weight(decreased by 6.3%–7.1%)and fresh weight(decreased by 6.7%–14.8%).It was also noted that photodegraded PVC-NPs resulted in damage to leaf stomata and roots,hindering photosynthesis and absorption of nutrients and hence the decrease in chlorophyll and soluble sugar contents.According to transcriptomic investigation results,the presence of aged PVC-NPs primarily influenced protein processing in endoplasmic reticulum(upregulated metabolic pathway)and phenylpropanoid biosynthesis(downregulated metabolic pathway)of pea seedlings.These results provide an in-depth understanding of how NPs influence the growth of plants.展开更多
Organotin mercaptide-based thermal stabilizer is recognized for its effectiveness in enhanc-ing thermal stability of polyvinyl chloride(PVC).In this study,we synthesized an organotin mercaptide-based thermal stabilize...Organotin mercaptide-based thermal stabilizer is recognized for its effectiveness in enhanc-ing thermal stability of polyvinyl chloride(PVC).In this study,we synthesized an organotin mercaptide-based thermal stabilizer from palm fatty acid distillate,which is a by-product of palm oil refining process,and then evaluated its thermal stabilizing effects on PVC and compared its efficacy and economics to those of mixed metal stearate.The synthesized thermal stabilizer mani-fests as methyltin mercaptoethyl carboxylate sulfides.Both dehydrochlorination and two-roll mill discoloration tests have demonstrated the high efficacy of the resulting thermal stabilizer in stabi-lizing PVC,surpassing the performance of mixed metal stearate,as evidenced by the lower dosage required.The synthesized PVC thermal stabilizer not only provides effective stabilization but also presents a competitive viable alternative.展开更多
基金Scientific and Technological Project of Hubei Province(No.2002AA105A01)
文摘Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.
基金The project supported by the Natural Science Foundation of Shanxi Province ( No. 2001H18) and the Research Foundation of Shanxi Province for Abroad Returnee (No. 200177)
文摘To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 +O2). When the volume ratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM). The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT) tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.
基金Project(50378062) supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100) supported by the Natural Science Foundation of Tianjin City,China
文摘Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
基金Funded by the National Natural Science Foundation of China(Nos.21173266,21473250)the Fundamental Research Funds for the Central Universities(No.11XNJ021)the Research Funds of Renmin University of China
文摘Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.
文摘The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.
文摘By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain experiences the melting state, elastic state and glass state and the conformations can be characterized by the increases of the trans-state of C--C--C--C and the near gauche-state of C--C--C--C1 with the decrease of temperature. It is found that the transition of the conformations is driven mainly by the Coulomb interaction between chain segments.
基金This project is supported by National Natural Science Foundation of China (No. 59773024).
文摘The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysis (EMP). This experiment was performed in a scanning electron microscope attached to an energy dispersive X-ray analyzer. Differential scanning calorimetry was also used to investigate the phase separation of the blends. The results show that PVC and PS are incompatible and the blends have sea-islands phase structures. Blends prepared via melt mixing have finer phase-dispersion than those prepared via solution casting.
基金funded by the Science and Technology Project of Henan Province(202102310593)and Science and Technology Project of Kaifeng City(2002003).
文摘The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.
基金Sponsored by the Departmet of Science ad Technology, Government of Heilongjiang Province(Grant No.GC04A407).
文摘The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.
文摘A novel type of thermal stabilizer-lanthanum tris (mono- i -octyl phthalate) (LTMP) was synthesized by double-decomposition reaction o f sodium mono- i -octyl phthalate with lanthanum chloride at 60 ℃. Sodium m ono- i -octyl phthalate was prepared by sodium hydrate and mono- i -octy l phthalate prepared by reaction of isooctyl alcohol and phthalic anhydride in th e presence of sulfuric acid catalyst at 110 ℃. The yield of lanthanum tris (mon o- i -octyl phthalate) is about 84.5%. Its thermal stabilities were measured by heat-ageing oven test when incorporated into PVC. The experimental results show that the heat stability time is about 40min at 190 ℃ when adding 3phr (pe r hundred resin) to PVC. The thermal stability of this product is better than th at of Ca-Zn complex and basic lead salt stabilizers, and equal to that of dibut yltin dilaurate.
文摘Antimony mercaplde heat stabilizer for polyvinyl chlorideis synthesized from antimony trioxide and mercaptocarboxylic acid esters, HS(CH2).COoi-C8H17 (n=1~2) at 100~115 C In the presence of 0. 5%~1 % an organic acid catalyst. Some physicochemicalconstants of the compounds, such as density and refractive index, aredetermined. The complexes are hydrolabll in aqueous solutions andthe bond of Sb-S is weaker than that of Sb-o. The forming bondproperty of antimony tris (mercaptoacid ester ) has been elucidatedby measurement of infrared spectra in comparison with mercaptocarboxylic acid esters. The polyvinyl chloride resins containing antimony mercaptide heat stabilizers, do not darken at elevated temperatures and exhibit a high degree of stability. It is proposed that mercaptocarboxylic acid ester freeradicals can esterify PVC microradicals at carbon atoms with upaired electrons.
基金Project (No. 50538070) supported by the National Natural ScienceFoundation of China
文摘This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.
基金supported by the National Natural Science Foundation of China(21991103,21991104,22008074,22378117)the Fundamental Research Funds for the Central Universities。
文摘Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.
基金the National Natural Science Foundation of China(Nos.52170100 and U21A2036)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110257)the Shenzhen Science and Innovation Commission(No.JCYJ20200109113006046).
文摘Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher specific surface areas and the presence of additives which can more easily leach.How original NPs and aged NPs affect plant growth has not been widely investigated.This work chose polyvinyl chloride NPs(PVC-NPs)that were subjected to up to 1000 h UV light radiation to explore the impact of PVC-NPs on the growth of pea seedlings(Pisum Sativum L.).The results indicated the existence of PVC-NPs with longer UV light radiation time and higher concentrations had more negative influences on pea seedlings’growth such as germination rate(decreased by 10.6%–22.5%),stem length(decreased by 2.8%–8.1%),dry weight(decreased by 6.3%–7.1%)and fresh weight(decreased by 6.7%–14.8%).It was also noted that photodegraded PVC-NPs resulted in damage to leaf stomata and roots,hindering photosynthesis and absorption of nutrients and hence the decrease in chlorophyll and soluble sugar contents.According to transcriptomic investigation results,the presence of aged PVC-NPs primarily influenced protein processing in endoplasmic reticulum(upregulated metabolic pathway)and phenylpropanoid biosynthesis(downregulated metabolic pathway)of pea seedlings.These results provide an in-depth understanding of how NPs influence the growth of plants.
文摘Organotin mercaptide-based thermal stabilizer is recognized for its effectiveness in enhanc-ing thermal stability of polyvinyl chloride(PVC).In this study,we synthesized an organotin mercaptide-based thermal stabilizer from palm fatty acid distillate,which is a by-product of palm oil refining process,and then evaluated its thermal stabilizing effects on PVC and compared its efficacy and economics to those of mixed metal stearate.The synthesized thermal stabilizer mani-fests as methyltin mercaptoethyl carboxylate sulfides.Both dehydrochlorination and two-roll mill discoloration tests have demonstrated the high efficacy of the resulting thermal stabilizer in stabi-lizing PVC,surpassing the performance of mixed metal stearate,as evidenced by the lower dosage required.The synthesized PVC thermal stabilizer not only provides effective stabilization but also presents a competitive viable alternative.