ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical s...ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.展开更多
The Stanley Pool, an almost circular island about thirty kilometers in diameter, crossed by the Congo River, is subject to diversified erosion of its riverbanks. This study highlights description using geotechnical pa...The Stanley Pool, an almost circular island about thirty kilometers in diameter, crossed by the Congo River, is subject to diversified erosion of its riverbanks. This study highlights description using geotechnical particle size distribution analysis of soils of the shoreline that make up the shoreline. Three critical areas of the island were examined to characterize the origins of these erosion phenomena. The results obtained show that the soil materials are mostly sands with very fine or fine grains characteristic of very unstable soils. The morpho-sedimentological characteristics of the areas studied show that these soils are plastic (with a Plasticity Index between 15 percent and 19 percent). The presence of water, action of currents or groundwater flow easily destabilize the materials that make up the riverbank and cause the fines to creep (Collapse of sandy riverbanks, Landslide of sandy riverbanks, …).展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41175118, 40775005 and 41175043)the National Basic Research Program of China (Grant No.2013CB430105)partially supported by the China Special Fund for Meteorological Research in the Public Interest (Grant Nos.GYHY200906003 and GYHY201306040)
文摘ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.
文摘The Stanley Pool, an almost circular island about thirty kilometers in diameter, crossed by the Congo River, is subject to diversified erosion of its riverbanks. This study highlights description using geotechnical particle size distribution analysis of soils of the shoreline that make up the shoreline. Three critical areas of the island were examined to characterize the origins of these erosion phenomena. The results obtained show that the soil materials are mostly sands with very fine or fine grains characteristic of very unstable soils. The morpho-sedimentological characteristics of the areas studied show that these soils are plastic (with a Plasticity Index between 15 percent and 19 percent). The presence of water, action of currents or groundwater flow easily destabilize the materials that make up the riverbank and cause the fines to creep (Collapse of sandy riverbanks, Landslide of sandy riverbanks, …).