This paper introduces the identification characteristics,occurrence regularity and control methods of several leaf diseases of poplar,including poplar angular leaf spot,poplar large spot,poplar leaf blight and poplar ...This paper introduces the identification characteristics,occurrence regularity and control methods of several leaf diseases of poplar,including poplar angular leaf spot,poplar large spot,poplar leaf blight and poplar rust,in order to provide the basis for the healthy growth of poplar and the technical support for the sustainable development of forestry industry.展开更多
The basic principle of life table method is deseribed, and the method of tree height instead of tree age in static life table is suggested, and it is also discussed that the possibility of natural poplar -birch forest...The basic principle of life table method is deseribed, and the method of tree height instead of tree age in static life table is suggested, and it is also discussed that the possibility of natural poplar -birch forest recover to broad-leaf Korean pine forest on low pitches in the Xiaoxing'an Mountains by this method. If there is no particular situation, Korean pines after high than 5m under natural Poplar-birch forest will basically survive and make their way into dominant callopy accompanied by climax broad-leaf species.展开更多
With economic incentives and interests in fast-growing poplar trees for short-rotation production of fiber and veneer, many new poplar hybrids have been bred and planted in China, but how to match the new poplar clone...With economic incentives and interests in fast-growing poplar trees for short-rotation production of fiber and veneer, many new poplar hybrids have been bred and planted in China, but how to match the new poplar clones to suitable sites and maintain their higher growth rates is still not very clear. In this study, the photosynthetic response of poplar leaves at various developmental stages during two seasons (summer and autumn) was explored and mechanistic models for the photosynthesis of poplar leaves at different developmental phases in response photosynthetic active radiation (PAR), temperature, and relatively humidity were established using the optimization software package 1st Opt. Mature poplar leaves in autumn had significantly higher photosynthetic capacity than leaves at other stages and seasons. Based on the models established for poplar leaves at different phases, the main limiting factors for photosynthesis at the research site were high PAR and temperature in the summer and low PAR in the autumn. Our results highlight the importance of selecting suitable sites, pruning and stand density control during the plantation development to maintain higher photosynthetic rates of poplar trees and to establish optimum cultivation patterns for various utilization of poplar plantations.展开更多
Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fa...Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fauna to litter decomposition. We studied the impacts of soil fauna on the decomposition of litter from poplar trees under three different land uses (i.e. poplar-crop integrated system, poplar plantation, and cropland), from December 2013 to December 2014, in a coastal area of Northern Jiangsu Province. We collected litter samples in litterbags with three mesh sizes (5, 1 and 0. 01 mm, respectively) to quantify the contribution of various soil fauna to the decomposition of poplar leaf litter. Litter decomposition rates differed significantly by land use and were highest in the cropland, intermediate in the poplar-crop integrated system, and lowest in the poplar plantation. Soil fauna in the poplar-crop integrated system was characterized by the highest numbers of taxa and individuals, and highest Margalef's diversity, which suggested that agro-forestry ecosystems may support a greater quantity, distribution, and biodiversity of soil fauna than can single-species agriculture or plantation forestry. The individuals and groups of soil fauna in the macro-mesh litterbags were higher than in the meso-mesh litterbags underthe same land use types. The average contribution rate of meso- and micro-fauna to litter decomposition was 18.46%, which was higher than the contribution rate of macro-fauna (3.31%). The percentage of remaining litter mass was inversely related to the density of the soil fauna (P 〈 0.05) in poplar plantations; however, was unrelated in the poplar-crop integrated system and cropland. This may have been the result of anthropogenic interference in poplar-crop integrated systems and croplands. Our study suggested that when land-use change alters vegetation types, it can affect species composition and the structure of soil fauna assemblages, which, in turn, affects litter decomposition.展开更多
lnoculation experiment .was made for 15 poplar species to determine their resistance to Mirssonina brunneaby the agar leaf-disc techniquc and the water-culture shoots technique The results show that Populus simonii an...lnoculation experiment .was made for 15 poplar species to determine their resistance to Mirssonina brunneaby the agar leaf-disc techniquc and the water-culture shoots technique The results show that Populus simonii and nigravar. theveslina are very susceptible to the disease:P. davidiana and P.koreana are slightly reslstant to the disease P. us-suriensis has high resistance. and the others remain moderate resistance. Experiments are also made for healthy leaves toanalysis the inorganic element content and water Content. And the results show that the contents of Fe and Ca are remarkblynegativcly related to the resistance of poplars to Marssonina brunnea.展开更多
In this study, tPA gene(human tissuetype plasminogen activator gene) was remolded with the leader sequence removed and an artificially synthesized sequence containing the initiator (ATG) added. Using the binary vector...In this study, tPA gene(human tissuetype plasminogen activator gene) was remolded with the leader sequence removed and an artificially synthesized sequence containing the initiator (ATG) added. Using the binary vector strategy,we first inserted the remolded tPA gene into the Ti-derived plasmid, PGA643 and then transferred,in a triparental mating system,the plasmid into a strain of Agrobacterium tumefaciens,A281, that contained vir-DNA.Finally poplar cells were transformed with A. tumefaciens using leaf discus method. The transformed cells were selected in culture containing kanamycin and in siyu hybridization.Successful generation of transgenic poplar was demonstrated by molecular hybridization in the cultivated plants and detection of tPA gene product.展开更多
叶片表型检测是感知杨树生长状态的重要手段之一,叶片颜色、姿态、纹理等形态结构表型信息可揭示植株所受胁迫的程度。其中,单个叶片分割是计算、统计其表型参数的基础。当前流行的AI算法已可满足叶片分割任务的性能需求,然而常规深度...叶片表型检测是感知杨树生长状态的重要手段之一,叶片颜色、姿态、纹理等形态结构表型信息可揭示植株所受胁迫的程度。其中,单个叶片分割是计算、统计其表型参数的基础。当前流行的AI算法已可满足叶片分割任务的性能需求,然而常规深度学习模型训练需要大量人工标签,制约了其发展和应用。本研究提出一种融合零样本学习和迁移学习的杨树叶片实例分割方法:运用视觉大模型GroundingDINO检索杨树苗图像中的叶片,获取对应的边界框;使用Segment Anything 2模型(segment anything model v2,SAM2)分割图像中全部对象,得到对应的掩膜(mask);将GroundingDINO模型生成的边界框作为提示,辅助SAM2过滤出叶片类别的掩膜;利用迁移学习策略,将AI生成的叶片掩膜作为标签信息,训练轻量化的YOLOv8-Segment模型。此外,构建独立测试集用于评估模型分割精度,选择交并比阈值为50%的平均精度(average precision using 50%intersection over union threshold,AP_(50))和平均交并比(mean intersection over union,mIoU)作为性能指标。结果表明,基于“Leaf”这一检索词,GroundingDINO与SAM2的组合(权重约810 MB)可实现高性能的杨树叶片分割,AP_(50)为0.936,mIoU为0.778。通过过滤异常尺寸的提示边界框,AP_(50)提升至0.942。迁移学习得到的YOLOv8-Segment模型权重仅6.5 MB,AP_(50)为0.888,大幅精简模型的同时保障了精度。本研究涉及的叶片分割模型构建过程均无须人工标注,实现了高效率、低成本的杨树叶片实例分割,可为杨树叶片计数和叶面积计算等后续表型分析应用提供技术支持。展开更多
基金Supported by General Program of Natural Science Foundation of Henan Province(222300420508)Scientific and Technological Research Program of Science and Technology Department of Henan Province(202102310478)+1 种基金Highlevel Talents Start-up Fund of Pingdingshan University(PXY-BSQD-2012009)Training Program for Young Key Teachers in Colleges and Universities of Henan Province(2021GGJS147)。
文摘This paper introduces the identification characteristics,occurrence regularity and control methods of several leaf diseases of poplar,including poplar angular leaf spot,poplar large spot,poplar leaf blight and poplar rust,in order to provide the basis for the healthy growth of poplar and the technical support for the sustainable development of forestry industry.
文摘The basic principle of life table method is deseribed, and the method of tree height instead of tree age in static life table is suggested, and it is also discussed that the possibility of natural poplar -birch forest recover to broad-leaf Korean pine forest on low pitches in the Xiaoxing'an Mountains by this method. If there is no particular situation, Korean pines after high than 5m under natural Poplar-birch forest will basically survive and make their way into dominant callopy accompanied by climax broad-leaf species.
基金financially supported by the National Key Technology R&D Program(2015BAD09B0203)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘With economic incentives and interests in fast-growing poplar trees for short-rotation production of fiber and veneer, many new poplar hybrids have been bred and planted in China, but how to match the new poplar clones to suitable sites and maintain their higher growth rates is still not very clear. In this study, the photosynthetic response of poplar leaves at various developmental stages during two seasons (summer and autumn) was explored and mechanistic models for the photosynthesis of poplar leaves at different developmental phases in response photosynthetic active radiation (PAR), temperature, and relatively humidity were established using the optimization software package 1st Opt. Mature poplar leaves in autumn had significantly higher photosynthetic capacity than leaves at other stages and seasons. Based on the models established for poplar leaves at different phases, the main limiting factors for photosynthesis at the research site were high PAR and temperature in the summer and low PAR in the autumn. Our results highlight the importance of selecting suitable sites, pruning and stand density control during the plantation development to maintain higher photosynthetic rates of poplar trees and to establish optimum cultivation patterns for various utilization of poplar plantations.
基金supported by the National Basic Research Program of China(973 Program,2012CB416904)partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fauna to litter decomposition. We studied the impacts of soil fauna on the decomposition of litter from poplar trees under three different land uses (i.e. poplar-crop integrated system, poplar plantation, and cropland), from December 2013 to December 2014, in a coastal area of Northern Jiangsu Province. We collected litter samples in litterbags with three mesh sizes (5, 1 and 0. 01 mm, respectively) to quantify the contribution of various soil fauna to the decomposition of poplar leaf litter. Litter decomposition rates differed significantly by land use and were highest in the cropland, intermediate in the poplar-crop integrated system, and lowest in the poplar plantation. Soil fauna in the poplar-crop integrated system was characterized by the highest numbers of taxa and individuals, and highest Margalef's diversity, which suggested that agro-forestry ecosystems may support a greater quantity, distribution, and biodiversity of soil fauna than can single-species agriculture or plantation forestry. The individuals and groups of soil fauna in the macro-mesh litterbags were higher than in the meso-mesh litterbags underthe same land use types. The average contribution rate of meso- and micro-fauna to litter decomposition was 18.46%, which was higher than the contribution rate of macro-fauna (3.31%). The percentage of remaining litter mass was inversely related to the density of the soil fauna (P 〈 0.05) in poplar plantations; however, was unrelated in the poplar-crop integrated system and cropland. This may have been the result of anthropogenic interference in poplar-crop integrated systems and croplands. Our study suggested that when land-use change alters vegetation types, it can affect species composition and the structure of soil fauna assemblages, which, in turn, affects litter decomposition.
文摘lnoculation experiment .was made for 15 poplar species to determine their resistance to Mirssonina brunneaby the agar leaf-disc techniquc and the water-culture shoots technique The results show that Populus simonii and nigravar. theveslina are very susceptible to the disease:P. davidiana and P.koreana are slightly reslstant to the disease P. us-suriensis has high resistance. and the others remain moderate resistance. Experiments are also made for healthy leaves toanalysis the inorganic element content and water Content. And the results show that the contents of Fe and Ca are remarkblynegativcly related to the resistance of poplars to Marssonina brunnea.
文摘In this study, tPA gene(human tissuetype plasminogen activator gene) was remolded with the leader sequence removed and an artificially synthesized sequence containing the initiator (ATG) added. Using the binary vector strategy,we first inserted the remolded tPA gene into the Ti-derived plasmid, PGA643 and then transferred,in a triparental mating system,the plasmid into a strain of Agrobacterium tumefaciens,A281, that contained vir-DNA.Finally poplar cells were transformed with A. tumefaciens using leaf discus method. The transformed cells were selected in culture containing kanamycin and in siyu hybridization.Successful generation of transgenic poplar was demonstrated by molecular hybridization in the cultivated plants and detection of tPA gene product.
文摘叶片表型检测是感知杨树生长状态的重要手段之一,叶片颜色、姿态、纹理等形态结构表型信息可揭示植株所受胁迫的程度。其中,单个叶片分割是计算、统计其表型参数的基础。当前流行的AI算法已可满足叶片分割任务的性能需求,然而常规深度学习模型训练需要大量人工标签,制约了其发展和应用。本研究提出一种融合零样本学习和迁移学习的杨树叶片实例分割方法:运用视觉大模型GroundingDINO检索杨树苗图像中的叶片,获取对应的边界框;使用Segment Anything 2模型(segment anything model v2,SAM2)分割图像中全部对象,得到对应的掩膜(mask);将GroundingDINO模型生成的边界框作为提示,辅助SAM2过滤出叶片类别的掩膜;利用迁移学习策略,将AI生成的叶片掩膜作为标签信息,训练轻量化的YOLOv8-Segment模型。此外,构建独立测试集用于评估模型分割精度,选择交并比阈值为50%的平均精度(average precision using 50%intersection over union threshold,AP_(50))和平均交并比(mean intersection over union,mIoU)作为性能指标。结果表明,基于“Leaf”这一检索词,GroundingDINO与SAM2的组合(权重约810 MB)可实现高性能的杨树叶片分割,AP_(50)为0.936,mIoU为0.778。通过过滤异常尺寸的提示边界框,AP_(50)提升至0.942。迁移学习得到的YOLOv8-Segment模型权重仅6.5 MB,AP_(50)为0.888,大幅精简模型的同时保障了精度。本研究涉及的叶片分割模型构建过程均无须人工标注,实现了高效率、低成本的杨树叶片实例分割,可为杨树叶片计数和叶面积计算等后续表型分析应用提供技术支持。