In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ...In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.展开更多
针对求解带软时间窗车辆路径问题(Vehicle routing problem with soft time windows,VRPSTW),提出一种改进的种群增量学习算法(Improved population-based incremental learning algorithm,IPBIL)优化运输总成本。提出一种新型的3维种...针对求解带软时间窗车辆路径问题(Vehicle routing problem with soft time windows,VRPSTW),提出一种改进的种群增量学习算法(Improved population-based incremental learning algorithm,IPBIL)优化运输总成本。提出一种新型的3维种群增量学习模型引导算法执行全局搜索,发现解空间中的优质解区域;设计一种基于客户间距离和惩罚成本相关度的交换操作进一步提高解的质量;提出一种关于时间窗问题性质的插入和逆转操作,对优质解区域进行细致搜索。最后,通过仿真实验和算法比较,验证了该文所提出的IPBIL的有效性。展开更多
设计一种新的混合蚁群算法。该算法以一种新的二进制蚁群算法为基础,混合PBIL(population based incremental learning)算法及遗传算法的交叉操作和变异操作,从而大大提高了种群的多样性及收敛速度,改善全局最优解的搜索能力。通过函数...设计一种新的混合蚁群算法。该算法以一种新的二进制蚁群算法为基础,混合PBIL(population based incremental learning)算法及遗传算法的交叉操作和变异操作,从而大大提高了种群的多样性及收敛速度,改善全局最优解的搜索能力。通过函数优化测试,表明该算法具有良好的收敛速度和稳定性,最后用于有机物毒性的QSAR研究中,取得较好效果。展开更多
基金Supported by the National Natural Science Foundation of China (60661003)the Research Project Department of Education of Jiangxi Province (GJJ10566)
文摘In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.
文摘针对求解带软时间窗车辆路径问题(Vehicle routing problem with soft time windows,VRPSTW),提出一种改进的种群增量学习算法(Improved population-based incremental learning algorithm,IPBIL)优化运输总成本。提出一种新型的3维种群增量学习模型引导算法执行全局搜索,发现解空间中的优质解区域;设计一种基于客户间距离和惩罚成本相关度的交换操作进一步提高解的质量;提出一种关于时间窗问题性质的插入和逆转操作,对优质解区域进行细致搜索。最后,通过仿真实验和算法比较,验证了该文所提出的IPBIL的有效性。
文摘设计一种新的混合蚁群算法。该算法以一种新的二进制蚁群算法为基础,混合PBIL(population based incremental learning)算法及遗传算法的交叉操作和变异操作,从而大大提高了种群的多样性及收敛速度,改善全局最优解的搜索能力。通过函数优化测试,表明该算法具有良好的收敛速度和稳定性,最后用于有机物毒性的QSAR研究中,取得较好效果。