This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and inte...This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.展开更多
In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an ...In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.展开更多
Fusarium crown rot (FCR) is a chronic disease in many regions of the world in wheat, caused by Fusarium culmorum, Fusarium pseudograminearum, and Fusarium graminearum. The operational efficacy of pesticide application...Fusarium crown rot (FCR) is a chronic disease in many regions of the world in wheat, caused by Fusarium culmorum, Fusarium pseudograminearum, and Fusarium graminearum. The operational efficacy of pesticide applications using unmanned aerial vehicles (UAVs) significantly affects the biological efficacy of the pesticides. This study aimed to compare the effectiveness of unmanned aerial vehicle and field sprayer applications in controlling crown rot diseases frequently observed in wheat crops in the Thrace region, Turkey. A licensed fungicide containing the active ingredients, prochloraz plus trifloxystrobin plus cyproconazole mixture was applied to wheat during the ZGS 27 growth stage. The disease severity, disease incidence, and the effectiveness of fungicide treatment on disease severity (%) were evaluated for F. culmorum crown rot disease. The results showed that the severity of the disease during the seedling stage was 11.25% and 18.33% for unmanned aerial vehicle and field sprayer applications, respectively. In the harvest stage, the incidence of disease was 28.33%-39.99% and 48.75%-51.25%, respectively, and the effectiveness of unmanned aerial vehicle application was found to be high, approximately 52%, during the seedling and harvest stages. The unmanned aerial vehicle, acting similarly to the field sprayer, exhibited higher grain quality under conditions of stress from disease. Furthermore, spike weight, grain weight, and number of grains exhibited stronger positive correlations compared to unmanned aerial vehicle treatment. Therefore, unmanned aerial vehicles have promising potential as viable options to manage FCR when the prevailing environmental conditions are not conducive to the use of field sprayer. The results of this research will guide future studies to investigate the efficacy of UAVs on a wider range of pesticides and to further develop the technology to investigate its effectiveness, cost-effectiveness, and sustainability in agricultural applications.展开更多
Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been propo...Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been proposed.However,limited studies have explicitly focused on additive and inherent correlation of crown components and total CW as well as the influence of competition on crown radius from the corresponding direction.In this study,two model systems were used,i.e.,aggregation method system(AMS)and disaggregation method system(DMS),to develop crown width additive model systems.For calculating spatially explicit competition index(CI),four neighbor tree selection methods were evaluated.CI was decomposed into four cardinal directions and added into the model systems.Results show that the power model form was more proper for our data to fit CW growth.For each crown radius and total CW,height to the diameter at breast height(HDR)and basal area of trees larger than the subject tree(BAL)significantly contributed to the increase of prediction accuracy.The 3-m fixed radius was optimal among the four neighborhoods selection ways.After adding decomposed competition Hegyi index into model systems AMS and DMS,the prediction accuracy improved.Of the model systems evaluated,AMS based on decomposed CI provided the best performance as well as the inherent correlation and additivity properties.Our study highlighted the importance of decomposed CI in tree CW modelling for additive model systems.This study focused on methodology and could be applied to other species or stands.展开更多
Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to tradi...Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.展开更多
Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman prese...Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.展开更多
Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Littl...Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.展开更多
Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary s...Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary situation. Aiming at prioritizing management actions, remote sensing seems to be an effective tool to inquire about stands’ health conditions and their evolution. To this end, this study aims at mapping and validating health status of cork oak stands in Maamora. Sentinel 2 images in 2015 and 2020 were processed to calculate the differential normalized difference water index (NDWI), revealing vegetation moisture variation caused by drought. A statistical method based on thresholds was used to map cork oak dieback stands, those with no changes and those recovered. Results have shown that 54.63% of cork oak in Maamora forest have not changed in terms of phytosanitary situation between 2015 and 2020, 31.10% of oak stands are afflicted by a slight decline and 12.97% by a severe decline. Areas with slight or strong recovery remain minimal and represent 1.04% and 0.25% respectively. Ground data indicated that the map generated displayed a good distinction between stands severely and slightly declined with a global accuracy of 66.66%. Therefore, further research elaborating an advanced vegetation index reflecting the various factors of dieback would be of much importance.展开更多
Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous ...Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous efforts devoted to electrocatalysts themselves,they still fail to tackle the above two challenges simultaneously.Herein,we employ a heterogeneous catalyst adlayer-composed of crown ethers associated with Li^(+)ions-to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis.Dynamically,the bound Li^(+)ions interact with the strong quadrupole moment of nitrogen,and trigger considerable reactant flux toward the catalyst.Thermodynamically,Li^(+)associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst,enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier.As expected,the proof-of-concept system achieves an ammonia yield rate of 168.5μg h^(-1)mg^(-1)and a Faradaic efficiency of 75.3%at-0.3 V vs.RHE.This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.展开更多
Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown wa...Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.展开更多
Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-c...Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.展开更多
目的:观察生物活性陶瓷材料iRoot BP Plus^(■)(Innovative BioCeramix Inc,Vancouver,BC,Canada)在儿童年轻恒前牙复杂冠折牙髓切断术中的应用,并对其预后进行分析,为该术式的更广泛应用提供临床参考。方法:收集2017年3月至2022年9月...目的:观察生物活性陶瓷材料iRoot BP Plus^(■)(Innovative BioCeramix Inc,Vancouver,BC,Canada)在儿童年轻恒前牙复杂冠折牙髓切断术中的应用,并对其预后进行分析,为该术式的更广泛应用提供临床参考。方法:收集2017年3月至2022年9月因恒前牙复杂冠折就诊于北京大学口腔医院急诊科,行以生物活性陶瓷iRoot BP Plus^(■)为盖髓剂的牙髓切断术患者。根据患者术前根尖片和初诊病历显示为年轻恒牙者,纳入97颗年轻恒牙进行研究。收集患者初诊及复查时的临床及影像学检查资料,临床检查包括根尖孔形成情况、松动度、牙冠颜色、牙髓活力测试(冷测)、有无脓肿和瘘管,影像学检查包括根周膜连续性、根尖周低密度影像、复诊时盖髓剂下方牙本质桥形成情况、髓腔及根管钙化情况,并对上述结果进行分析。结果:最终纳入有复诊记录的64例患者共75颗患牙,其中男性37例(57.8%),女性27例(42.2%),就诊时平均年龄为9.1岁,平均随访时长19.3个月。采用iRoot BP Plus^(■)盖髓的牙髓切断术后6个月成功率为96.0%,术后1年成功率为94.7%。术后复查2年以上者共23例,累计失败6例。成功率在患牙就诊时距外伤的时间是否超过24 h组中(P=0.61)以及是否松动组中(P=0.28)的差异无统计学意义。结论:对无移位性损伤的年轻恒牙复杂冠折患牙,采用iRoot BP Plus^(■)盖髓的牙髓切断术1年成功率很高,该术式具备广泛推广价值。展开更多
基金supported by the Natural Science Foundation of China (32071758)the Fundamental Research Funds for the Central Universities of China (No. 2572020BA01)
文摘This paper introduces a new method of calculating crown projection area(CPA),the area of level ground covered by a vertical projection of a tree crown from measured crown radii through numerical interpolation and integration.This novel method and other four existing methods of calculating CPA were compared using detailed crown radius measurements from 30 tall trees of Eucalyptus pilularis variable in crown size,shape,and asymmetry.The four existing methods included the polygonal approach and three ways of calculating CPA as the area of a circle using the arithmetic,geometric and quadratic mean radius.Comparisons were made across a sequence of eight non-consecutive numbers(from 2 to 16)of measured crown radii for each tree over the range of crown asymmetry of the 30 trees through generalized linear models and multiple comparisons of means.The sequence covered the range of the number of crown radii measured for calculating the CPA of a tree in the literature.A crown asymmetry index within the unit interval was calculated for each tree to serve as a normative measure.With a slight overestimation of 2.2%on average and an overall mean error size of 7.9%across the numbers of crown radii that were compared,our new method was the least biased and most accurate.Calculating CPA as a circle using the quadratic mean crown radius was the second best,which had an average overestimation of 4.5%and overall mean error size of 8.8%.These two methods remained by and large unbiased as crown asymmetry increased,while the other three methods showed larger bias of underestimation.For the conventional method of using the arithmetic mean crown radius to calculate CPA as a circle,bias correction factors were developed as a function of crown asymmetry index to delineate the increasing magnitude of bias associated with greater degrees of crown asymmetry.This study reveals and demonstrates such relationships between the accuracy of CPA calculations and crown asymmetry and will help increase awareness among researchers and practitioners on the existence of bias in their CPA calculations and for the need to use an unbiased method in the future.Our new method is recommended for calculating CPA where at least four crown radius measurements per tree are available because that is the minimum number required for its use.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1F1A1047203)financially supported by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(P0026100)+1 种基金the NRF grant funded by the Korea government(MSIT)(2021R1I1A1A01061036)financial support from the NRF grant funded by the Korea government(MSIT)(RS-2023-00213920)。
文摘In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.
基金the student team members Arife Adak,Cagatay Dayan,Alara Uzuner,KemalÇelik,Aysenur Topcu,and Gurkan Simsek for their important contributions.
文摘Fusarium crown rot (FCR) is a chronic disease in many regions of the world in wheat, caused by Fusarium culmorum, Fusarium pseudograminearum, and Fusarium graminearum. The operational efficacy of pesticide applications using unmanned aerial vehicles (UAVs) significantly affects the biological efficacy of the pesticides. This study aimed to compare the effectiveness of unmanned aerial vehicle and field sprayer applications in controlling crown rot diseases frequently observed in wheat crops in the Thrace region, Turkey. A licensed fungicide containing the active ingredients, prochloraz plus trifloxystrobin plus cyproconazole mixture was applied to wheat during the ZGS 27 growth stage. The disease severity, disease incidence, and the effectiveness of fungicide treatment on disease severity (%) were evaluated for F. culmorum crown rot disease. The results showed that the severity of the disease during the seedling stage was 11.25% and 18.33% for unmanned aerial vehicle and field sprayer applications, respectively. In the harvest stage, the incidence of disease was 28.33%-39.99% and 48.75%-51.25%, respectively, and the effectiveness of unmanned aerial vehicle application was found to be high, approximately 52%, during the seedling and harvest stages. The unmanned aerial vehicle, acting similarly to the field sprayer, exhibited higher grain quality under conditions of stress from disease. Furthermore, spike weight, grain weight, and number of grains exhibited stronger positive correlations compared to unmanned aerial vehicle treatment. Therefore, unmanned aerial vehicles have promising potential as viable options to manage FCR when the prevailing environmental conditions are not conducive to the use of field sprayer. The results of this research will guide future studies to investigate the efficacy of UAVs on a wider range of pesticides and to further develop the technology to investigate its effectiveness, cost-effectiveness, and sustainability in agricultural applications.
基金supported by the National Natural Science Foundation of China,“Study on crown models for L arix olgensis based on tree growth” (No.31870620)。
文摘Crown development is closely related to the biomass and growth rate of the tree and its width(CW)is an important covariable in growth and yield models and in forest management.To date,various CW models have been proposed.However,limited studies have explicitly focused on additive and inherent correlation of crown components and total CW as well as the influence of competition on crown radius from the corresponding direction.In this study,two model systems were used,i.e.,aggregation method system(AMS)and disaggregation method system(DMS),to develop crown width additive model systems.For calculating spatially explicit competition index(CI),four neighbor tree selection methods were evaluated.CI was decomposed into four cardinal directions and added into the model systems.Results show that the power model form was more proper for our data to fit CW growth.For each crown radius and total CW,height to the diameter at breast height(HDR)and basal area of trees larger than the subject tree(BAL)significantly contributed to the increase of prediction accuracy.The 3-m fixed radius was optimal among the four neighborhoods selection ways.After adding decomposed competition Hegyi index into model systems AMS and DMS,the prediction accuracy improved.Of the model systems evaluated,AMS based on decomposed CI provided the best performance as well as the inherent correlation and additivity properties.Our study highlighted the importance of decomposed CI in tree CW modelling for additive model systems.This study focused on methodology and could be applied to other species or stands.
基金funded by National Natural Science Foundation of China(Grant No.31870623)National Key R&D Program of China(Grant No.2022YFD2200501).
文摘Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.
文摘Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.
基金supported by the State Key Laboratory of North China Crop Improvement and RegulationNational Key Research and Development Program of China (2018YFD0300501)National Natural Science Foundation of China (31872865)。
文摘Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.
文摘Cork oak in Maamora forest is experiencing the dieback phenomenon. The evaluation of the latter in this forest has gained the importance over time and with the solicitation of managers to objectify its phytosanitary situation. Aiming at prioritizing management actions, remote sensing seems to be an effective tool to inquire about stands’ health conditions and their evolution. To this end, this study aims at mapping and validating health status of cork oak stands in Maamora. Sentinel 2 images in 2015 and 2020 were processed to calculate the differential normalized difference water index (NDWI), revealing vegetation moisture variation caused by drought. A statistical method based on thresholds was used to map cork oak dieback stands, those with no changes and those recovered. Results have shown that 54.63% of cork oak in Maamora forest have not changed in terms of phytosanitary situation between 2015 and 2020, 31.10% of oak stands are afflicted by a slight decline and 12.97% by a severe decline. Areas with slight or strong recovery remain minimal and represent 1.04% and 0.25% respectively. Ground data indicated that the map generated displayed a good distinction between stands severely and slightly declined with a global accuracy of 66.66%. Therefore, further research elaborating an advanced vegetation index reflecting the various factors of dieback would be of much importance.
基金supported by the National Natural Science Foundation of China(U21A20332,52103226,52202275,52203314,and 12204253)the Distinguished Young Scholars Fund of Jiangsu Province(BK20220061)the Fellowship of China Postdoctoral Science Foundation(2021M702382)。
文摘Electrosynthesis of ammonia from the reduction of nitrogen is still confronted with the limited supply of gas reactant in dynamics as well as high activation barrier in thermodynamics.Unfortunately,despite tremendous efforts devoted to electrocatalysts themselves,they still fail to tackle the above two challenges simultaneously.Herein,we employ a heterogeneous catalyst adlayer-composed of crown ethers associated with Li^(+)ions-to achieve the dual promotion of dynamics and thermodynamics for ambient ammonia synthesis.Dynamically,the bound Li^(+)ions interact with the strong quadrupole moment of nitrogen,and trigger considerable reactant flux toward the catalyst.Thermodynamically,Li^(+)associated with the oxygen of crown ether achieves a higher density of states at the Fermi level for the catalyst,enabling effortless electron transfer from the catalysts to nitrogen and thus greatly reducing the activation barrier.As expected,the proof-of-concept system achieves an ammonia yield rate of 168.5μg h^(-1)mg^(-1)and a Faradaic efficiency of 75.3%at-0.3 V vs.RHE.This system-level approach opens up pathways for tackling the two key challenges that have limited the field of ammonia synthesis.
基金supported by the National Natural Science Foundation of China–Shandong Joint Fund(No.U1706226)the National Natural Science Foundation of China(No.52171284).
文摘Rubble mound breakwaters with a crown wall are a common coastal engineering structure.The wave force on crown walls is an important parameter for the practice engineering design.Particularly,the wave force on crown walls under intermediate depths has been studied through physical model tests and numerical simulations.In this study,a three-dimensional numerical wave flume was developed to investigate monochromatic wave interactions in a rubble mound breakwater with a crown wall.Armor blocks were modeled in detail.The Navier-Stokes equations for two-phase incompressible flows,combined with shear stress transport k-ωturbulence model and volume of fluid method for tracking the free surface,were solved.A set of laboratory experiments were performed to validate the adopted model.Subsequently,a series of numerical simulations were implemented to examine the impacts of different hydrodynamic parameters(including wave height,incident wave period,and water depth)and the berm width on the wave force of the crown wall.Finally,a comparison of the experimental results and Martin method shows that the latter method is not suitable for this experimental scope.New empirical formulas are proposed to predict the wave force on crown walls under intermediate depth.The results can provide a basis for the design of crown wall of rubble mound breakwaters at intermediate depths.
基金surported by the Jilin Province Science and Technology Development Project(No.20220203017SF)Industrialization Project of the 13th Five-Year"Education Department of Jilin Province(No.JJKH20200334KJ)the National Natural Sci-ence Foundation of China(No.11704143).
文摘Bis(15-crown-5)-stilbenes containing crown ether parts have been widely used in a variety of chemical applications,such as cation detectors,because of their ability to selectively bind to alkali metal cations,Bis(15-crown-5)-stilbenes and its derivatives with complexation of one-or two-alkali metal cation(Li^(+),Na^(+)and K^(+))have been theoretically investigat-ed by quantum chemistry methods.The coordination of alkali cations results in partial shrinkage of crown ethers,which directly affected natural distribution analysis charges and molecular orbital energy levels.The number of alkali metal ions has significant effects on absorption spectra and mean second hyperpolarizability.When one alkali metal ion was added to the anticonformer of bis(15-crown-5)-stilbene,the absorption spectra were obvious-ly redshifted and the mean second hyperpolarizability values were slightly increased;while two alkali metal ions were added to bis(15-crown-5)-stilbene,the absorption spectra were ob-viously blue shifted and the mean second hyperpolarizability values decreased.On the other hand,as the radius of the alkali ions increased,the mean second hyperpolarizability values of the compounds increased gradually.It is indicated that the mean second hyperpolarizability value is sensitive to the number and radius of the alkali metal cations,thus the third order nonlinear optical response can be used as a signal to detect the number and type of alkali met-al ions.
文摘目的:观察生物活性陶瓷材料iRoot BP Plus^(■)(Innovative BioCeramix Inc,Vancouver,BC,Canada)在儿童年轻恒前牙复杂冠折牙髓切断术中的应用,并对其预后进行分析,为该术式的更广泛应用提供临床参考。方法:收集2017年3月至2022年9月因恒前牙复杂冠折就诊于北京大学口腔医院急诊科,行以生物活性陶瓷iRoot BP Plus^(■)为盖髓剂的牙髓切断术患者。根据患者术前根尖片和初诊病历显示为年轻恒牙者,纳入97颗年轻恒牙进行研究。收集患者初诊及复查时的临床及影像学检查资料,临床检查包括根尖孔形成情况、松动度、牙冠颜色、牙髓活力测试(冷测)、有无脓肿和瘘管,影像学检查包括根周膜连续性、根尖周低密度影像、复诊时盖髓剂下方牙本质桥形成情况、髓腔及根管钙化情况,并对上述结果进行分析。结果:最终纳入有复诊记录的64例患者共75颗患牙,其中男性37例(57.8%),女性27例(42.2%),就诊时平均年龄为9.1岁,平均随访时长19.3个月。采用iRoot BP Plus^(■)盖髓的牙髓切断术后6个月成功率为96.0%,术后1年成功率为94.7%。术后复查2年以上者共23例,累计失败6例。成功率在患牙就诊时距外伤的时间是否超过24 h组中(P=0.61)以及是否松动组中(P=0.28)的差异无统计学意义。结论:对无移位性损伤的年轻恒牙复杂冠折患牙,采用iRoot BP Plus^(■)盖髓的牙髓切断术1年成功率很高,该术式具备广泛推广价值。