A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build ...Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.展开更多
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.
基金supported by the National Natural Science Foundation of China(51322904 and 51279127)the Program for New Century Excellent Talents in University(HCET-11-0370)
文摘Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.