期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synthesis of High Surface Area and Well Crystallized Mesoporous WC at Low Temperature with a Pore Structure Collapsed Replication Route
1
作者 李华 施剑林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期105-110,共6页
An approach named "pore structure collapsed replication route" has been developed to prepare mesoporous WC materials with a high surface area (105 m2/g) and crystallized framework at a temperature as low as 700 ℃... An approach named "pore structure collapsed replication route" has been developed to prepare mesoporous WC materials with a high surface area (105 m2/g) and crystallized framework at a temperature as low as 700 ℃. The XRD, TEM, EDS, and BET characterizations were conducted to analyze the effects of the synthesis parameters and the template types on the structure of mesoporous WC. The compaction on the templates is the key to form mesoporous structure of WC while the templates help to control the size of crystalline. At a content of 7 wt% for the precursor of WC, the mesoporous WC could be formed with well ordered structure. 展开更多
关键词 mesoporous WC pore structure collapsed replication low temperature synthesis parameters
下载PDF
Water sorption on coal:effects of oxygen-containing function groups and pore structure 被引量:4
2
作者 Ang Liu Shimin Liu +1 位作者 Peng Liu Kai Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期983-1002,共20页
Coal-water interactions have profound influences on gas extraction from coal and coal utilization.Experimental measurements on three coals using X-ray photoelectron spectroscopy(XPS),low-temperature nitrogen adsorptio... Coal-water interactions have profound influences on gas extraction from coal and coal utilization.Experimental measurements on three coals using X-ray photoelectron spectroscopy(XPS),low-temperature nitrogen adsorption and dynamic water vapor sorption(DVS)were conducted.A mechanism-based isotherm model was proposed to estimate the water vapor uptake at various relative humidities,which is well validated with the DVS data.The validated isotherm model of sorption was further used to derive the isosteric heat of water vapor sorption.The specific surface area of coal pores is not the determining parameter that controls water vapor sorption at least during the primary adsorption stage.Oxidation degree dominates the primary adsorption,and which togethering with the cumulative pore volume determine the secondary adsorption.Higher temperature has limited effects on primary adsorption process.The isosteric heat of water adsorption decreases as water vapor uptake increases,which is found to be close to the latent heat of bulk water condensation at higher relative humidity.The results confirmed that the primary adsorption is controlled by the stronger bonding energy while the interaction energy between water molecules during secondary adsorption stage is relatively weak.However,the thermodynamics of coal-water interactions are complicated since the internal bonding interactions within the coal are disrupted at the same time as new bonding interactions take place within water molecules.Coal has a shrinkage/swelling colloidal structure with moisture loss/gain and it may exhibit collapse behavior with some collapses irreversible as a function of relative humidity,which further plays a significant role in determining moisture retention. 展开更多
关键词 Water vapor ISOTHERM Surface oxidation pore collapse Isosteric heat of adsorption
下载PDF
Constitutive modelling of concrete material subjected to low-velocity projectile impact:insights into damage mechanism and target resistance
3
作者 Shen LIU Xieping HUANG +1 位作者 Xiangzhen KONG Qin FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第2期161-182,共22页
This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechani... This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechanisms and the major factors that account for the target resistance of the concrete.An improved continuous surface cap model recently proposed was employed.The model was first equipped with element erosion criteria and was adequately validated by comparisons with ballistic experiments.Comprehensive numerical simulations were carried out where the individual influence of tensile,shear,and volumetric behaviors(pore collapse)of a concrete target on its ballistic performance was investigated.Results demonstrated that cratering on the front face and scabbing on the rear face of the concrete target were mainly dominated by its tensile behavior.The major target resistance came from the second tunneling stage which was primarily governed by the shear and volumetric behaviors of the concrete.Particularly,this study captured the pore collapse-induced damage phenomenon during the high-pressure tunneling stage,which has been extensively reported in experiments but has usually been neglected in previous numerical investigations. 展开更多
关键词 PENETRATION PERFORATION Damage mechanism Target resistance Projectile impact pore collapse
原文传递
A GENERALIZED MODELING FOR CEMENT-BASED MATERIALS UNDER LARGE RANGE OF COMPRESSION STATE
4
作者 Yan Zhang 1 ,2 Jianfu Shao 2 Shouyi Xie 2 ( 1 College of Mechanics and Materials, Hohai University, Nanjing 210098, China) ( 2 Laboratory of Mechanics of Lille, UMR 8107 CNRS, Polytech’Lille, Villeneuve d’Ascq 59655, France) 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第S1期22-33,共12页
The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed ... The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state. 展开更多
关键词 cement-based materials cup modeling deviatoric shearing pore collapse damage criterion large range of compression state
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部