Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ...Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.展开更多
The present paper uses the mathematics model for consolidation of unsaturated soil developed in ref.[I]to solve boundary value problems.The analytical solutions for one-dimensional consolidation problem are gained by ...The present paper uses the mathematics model for consolidation of unsaturated soil developed in ref.[I]to solve boundary value problems.The analytical solutions for one-dimensional consolidation problem are gained by making use of Laplace transform and finite Fourier transform.The displacement and the pore water pressure as well as the pore gas pressure are found from governing equations simultaneously.The theoretical formulae of coefficient and degree of consolidation are also given in the paper.With the help of the method of Galerkin Weighted Residuals,the finite element equations for two-dimensional consolidation problem are derived.A FORTRAN program named CSU8 using 8-node isoparameter element is designed.A plane strain consolidation problem is solved using the program,and some distinguishing features on consolidation of unsaturated soil and certain peculiarities on numerical analysis are revealed.These achievements make it convenient to apply the theory proposed by the author in engineering practice.展开更多
基金supported by the State Key Research Development Program of China (Nos. 2016YFC0801402 and 2016YFC0600708)the National Natural Science Foundation of China (No. 51474219)
文摘Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good.
基金Project supported by the National Natural Science Foundation of China
文摘The present paper uses the mathematics model for consolidation of unsaturated soil developed in ref.[I]to solve boundary value problems.The analytical solutions for one-dimensional consolidation problem are gained by making use of Laplace transform and finite Fourier transform.The displacement and the pore water pressure as well as the pore gas pressure are found from governing equations simultaneously.The theoretical formulae of coefficient and degree of consolidation are also given in the paper.With the help of the method of Galerkin Weighted Residuals,the finite element equations for two-dimensional consolidation problem are derived.A FORTRAN program named CSU8 using 8-node isoparameter element is designed.A plane strain consolidation problem is solved using the program,and some distinguishing features on consolidation of unsaturated soil and certain peculiarities on numerical analysis are revealed.These achievements make it convenient to apply the theory proposed by the author in engineering practice.