期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal 被引量:6
1
作者 Li Bo Wei Jianping +2 位作者 Wang Kai Li Peng Wang Ke 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期637-641,共5页
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur... This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam. 展开更多
关键词 Permeability coefficient Coal seam effective pressure Loaded coal pore pressure
下载PDF
Theoretical analysis of influencing factors on resistance in the process of gas migration in coal seams 被引量:2
2
作者 Wang Kai Liu Ang Zhou Aitao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期315-319,共5页
Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ... Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good. 展开更多
关键词 Porous media Gas Resistance Tortuosity effective stress pore pressure
下载PDF
ACOUSTOELASTIC THEORY FOR FLUID-SATURATED POROUS MEDIA 被引量:3
3
作者 Huaqing Wang Jiayong Tian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第1期41-53,共13页
Based on the finite deformation theory of the continuum and poroelastic theory, the aeoustoelastic theory for fluid-saturated porous media (FSPM) in natural and initial coordi- nates is developed to investigate the ... Based on the finite deformation theory of the continuum and poroelastic theory, the aeoustoelastic theory for fluid-saturated porous media (FSPM) in natural and initial coordi- nates is developed to investigate the influence of effective stresses and fluid pore pressure on wave velocities. Firstly, the assumption of a small dynamic motion superimposed on a largely static pre- deformation of the FSPM yields natural, initial, and final configurations, whose displacements, strains, and stresses of the solid-skeleton and the fluid in an FSPM particle could be described in natural and initial coordinates, respectively. Secondly, the subtraction of initial-state equations of equilibrium from the final-state equations of motion and the introduction of non-linear constitu- rive relations of the FSPM lead to equations of motion for the small dynamic motion. Thirdly, the consideration of homogeneous pre-deformation and the plane harmonic form of the small dynamic motion gives an acoustoelastic equation, which provides analytical formulations for the relation of the fast longitudinal wave, the fast shear wave, the slow shear wave, and the slow longitudinal wave with solid-skeleton stresses and fluid pore-pressure. Lastly, an isotropic FSPM under the close-pore jacketed condition, open-pore jacketed condition, traditional unjacketed condition, and triaxial condition is taken as an example to discuss the velocities of the fast and slow shear waves propagating along the direction of one of the initial principal solid-skeleton strains. The detailed discussion shows that the wave velocities of the FSPM are usually influenced by the effective stresses and the fluid pore pressure. The fluid pore-pressure has little effect on the wave velocities of the FSPM only when the components of the applied initial principal solid-skeleton stresses or strains are equal, which is consistent with the previous experimental results. 展开更多
关键词 ACOUSTOELASTICITY fluid-saturated porous media wave velocity the effective stress fluid pore pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部