Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dy...Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties ...To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.展开更多
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
Gaomiaozi(GMZ)bentonite is a potential buffer/backfill material for a deep geological disposal of highlevel radioactive waste.It has a wide pore size distribution(PSD)with sizes ranging from several nanometers to more...Gaomiaozi(GMZ)bentonite is a potential buffer/backfill material for a deep geological disposal of highlevel radioactive waste.It has a wide pore size distribution(PSD)with sizes ranging from several nanometers to more than one hundred microns.Thus,properly characterizing the pore structures of GMZ bentonite is a challenging issue.In this study,pressure-controlled porosimetry(PCP),ratecontrolled porosimetry(RCP),and scanning electron microscopy(SEM)were used to investigate the PSD of GMZ bentonite,The results indicate that each method has its limitation,and a combined use of PCP and RCP is suitable to obtain the full-scale PSD of GMZ bentonite.Moreover,we also compared the full-scale PSD with nuclear magnetic resonance(NMR)result.It is found that there is no significant difference in the range of PSD characterization between NMR and mercury intrusion method(PCP and RCP).However,in a ce rtain range,the detection accuracy of NMR is higher than that of mercury injection method.Finally,permeability prediction based on PCP and SEM data was conducted,and both of the two methods were found to be able to predict the permeability.The combined method is effective to obtain the full-scale PSD of GMZ bentonite,which is the key to estimation of the sealing ability of bentonite buffer.展开更多
The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot pro...The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.展开更多
The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The fi...The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.展开更多
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious ...The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.展开更多
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Cha...Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.展开更多
The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A ...The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A culm-like model for pore structure was introduced tocharacterize the membrane pores instead of the conventional model which does not reflect the radiusvariation along the pore passages and is unable to explain the thickness effect on the membrane PSD.A laminate structure,taking the culm-like model for pore structure into consideration,was hypoth-esized for ceramic MF membranes.A mathematical model was then established to quantitativelydescribe the relationship between the membrane number PSD and the membrane thickness.Goodresults were obtained for the correlation of mean pore size and simulation of the PSD for ceramicMF membranes.展开更多
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec...Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and...A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.展开更多
We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influen...We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.展开更多
Seeing that some commercial gas adsorption instrument still uses a too rough method for cal-culation of mesopore size distribution, we reviewed some practical methods of calculation so farproposed in the literature. W...Seeing that some commercial gas adsorption instrument still uses a too rough method for cal-culation of mesopore size distribution, we reviewed some practical methods of calculation so farproposed in the literature. We have found that most of these methods and many books have someincorrectness in the geometric factor Q_i used for the calculation of pore volume △V_i from corevolume △V_i^k. It has been proved that the correct expression for Q_i should be[_i/(_i^k+1/2△t_i)]~2for cylindrical pores, _i,/(_i^k+1/2△t_i)for slit-shaped pores. On the basis of this correct Q_i,these methods were applied to the desorption isotherms. The results were compared and analyzed.展开更多
In this paper melt blown webs with different fiber dis-tributing density were simulated by the computer,and then their pore size distribution was calculated with the image analysis.Based on simulated fiber webs,the ef...In this paper melt blown webs with different fiber dis-tributing density were simulated by the computer,and then their pore size distribution was calculated with the image analysis.Based on simulated fiber webs,the effect of 10% big pores on the filtration properties was ana-lyzed theoretically.It is found that the pore radius be-comes smaller and its distribution becomes more uniformwith increasing line density,i.e.,the fiber distributing density.The flow proportion in these 10% big pores is linearly increased with increasing the standard展开更多
In this paper,the power law of particle size distributions (PSDs) in conventional water treatment processes is developed. After measuring the particle size distributions of raw-water,settled water and filtered water,a...In this paper,the power law of particle size distributions (PSDs) in conventional water treatment processes is developed. After measuring the particle size distributions of raw-water,settled water and filtered water,a mathematical model between particle diameter and the amount of particles was studied. The value of collision frequency factor β in the PSDs model can be used to represent the collision behavior of particles ,and can be used as foundation exponent to choose suitable coagulation to accelerate particles aggregation. At the same time,the relationship between the value of parameter K and the total particles volume V was deduced. K is defined as particle volume exponent,which can represent the total volume of particles. The degression degree of K shows the removal efficiency of potable water treatment units.展开更多
In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrin...In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.展开更多
Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are consider...Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.展开更多
In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical mode...In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical model that was developed in a previous research in describing the densification process.展开更多
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)the support from Shell。
文摘Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金Project (2012CB619100) supported by the National Basic Research Program of China
文摘To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.
基金support of the National Natural Science Foundation of China(Grant Nos.51809263)the Open Fund of Key Laboratory of Deep Earth Science and Engineering(Sichuan University)(Grant Nos.DESE201906 and DESE201907)。
文摘Gaomiaozi(GMZ)bentonite is a potential buffer/backfill material for a deep geological disposal of highlevel radioactive waste.It has a wide pore size distribution(PSD)with sizes ranging from several nanometers to more than one hundred microns.Thus,properly characterizing the pore structures of GMZ bentonite is a challenging issue.In this study,pressure-controlled porosimetry(PCP),ratecontrolled porosimetry(RCP),and scanning electron microscopy(SEM)were used to investigate the PSD of GMZ bentonite,The results indicate that each method has its limitation,and a combined use of PCP and RCP is suitable to obtain the full-scale PSD of GMZ bentonite.Moreover,we also compared the full-scale PSD with nuclear magnetic resonance(NMR)result.It is found that there is no significant difference in the range of PSD characterization between NMR and mercury intrusion method(PCP and RCP).However,in a ce rtain range,the detection accuracy of NMR is higher than that of mercury injection method.Finally,permeability prediction based on PCP and SEM data was conducted,and both of the two methods were found to be able to predict the permeability.The combined method is effective to obtain the full-scale PSD of GMZ bentonite,which is the key to estimation of the sealing ability of bentonite buffer.
基金Supported by the National Natural Science Foundation of China(No.29936100).
文摘The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.
基金funded by the Natural Science Foundation of China Project(No.41602138)National Science and Technology Special Grant(No.2016ZX05006007)+1 种基金China Postdoctoral Science Foundation-funded Project(2015M580617,2017T100524)the Fundamental Research Funds for the Central Universities(15CX08001A)
文摘The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.
基金Funded by the Research Grants Council of the Hong Kong SAR Government Project(31.37. A212)
文摘The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.
基金the National Natural Science Foundation of China(Grant No.41625009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010404)The authors also extend their thanks to the editors and reviewers for their positive and constructive comments and suggestions.
文摘Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.
基金Supported by the National Natural Science Foundation of China.
文摘The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A culm-like model for pore structure was introduced tocharacterize the membrane pores instead of the conventional model which does not reflect the radiusvariation along the pore passages and is unable to explain the thickness effect on the membrane PSD.A laminate structure,taking the culm-like model for pore structure into consideration,was hypoth-esized for ceramic MF membranes.A mathematical model was then established to quantitativelydescribe the relationship between the membrane number PSD and the membrane thickness.Goodresults were obtained for the correlation of mean pore size and simulation of the PSD for ceramicMF membranes.
基金supported by grants from Shenzhen Key Medical Subject(No.SZXK023)Shenzhen“SanMing”Project of Medicine(No.SZSM201612092)+3 种基金Shenzhen Research and Development Projects(No.JCYJ20170307111755218)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011290)National Key Research and Development Program of China(No.2016YFC1102103)China Postdoctoral Science Foundation(No.2020M672756)
文摘Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
文摘A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.
基金Funded by the Key Research and Development Program of Zhejiang Province in 2018(No2018C03033-1)。
文摘We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.
文摘Seeing that some commercial gas adsorption instrument still uses a too rough method for cal-culation of mesopore size distribution, we reviewed some practical methods of calculation so farproposed in the literature. We have found that most of these methods and many books have someincorrectness in the geometric factor Q_i used for the calculation of pore volume △V_i from corevolume △V_i^k. It has been proved that the correct expression for Q_i should be[_i/(_i^k+1/2△t_i)]~2for cylindrical pores, _i,/(_i^k+1/2△t_i)for slit-shaped pores. On the basis of this correct Q_i,these methods were applied to the desorption isotherms. The results were compared and analyzed.
文摘In this paper melt blown webs with different fiber dis-tributing density were simulated by the computer,and then their pore size distribution was calculated with the image analysis.Based on simulated fiber webs,the effect of 10% big pores on the filtration properties was ana-lyzed theoretically.It is found that the pore radius be-comes smaller and its distribution becomes more uniformwith increasing line density,i.e.,the fiber distributing density.The flow proportion in these 10% big pores is linearly increased with increasing the standard
基金Sponsored by the National Basic Research Program of China(973)(Grant No.2004CB41850)the Natural Science Foundation of Heilongjiang Prov-ince(Grant No.E200609)
文摘In this paper,the power law of particle size distributions (PSDs) in conventional water treatment processes is developed. After measuring the particle size distributions of raw-water,settled water and filtered water,a mathematical model between particle diameter and the amount of particles was studied. The value of collision frequency factor β in the PSDs model can be used to represent the collision behavior of particles ,and can be used as foundation exponent to choose suitable coagulation to accelerate particles aggregation. At the same time,the relationship between the value of parameter K and the total particles volume V was deduced. K is defined as particle volume exponent,which can represent the total volume of particles. The degression degree of K shows the removal efficiency of potable water treatment units.
文摘In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.
文摘Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.
文摘In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical model that was developed in a previous research in describing the densification process.