期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sand control effect of HDPE sandbreak nets with different porosity structure 被引量:1
1
作者 QingHe Niu JianJun Qu +1 位作者 AiGuo Zhao LiHai Tan 《Research in Cold and Arid Regions》 CSCD 2022年第6期403-411,共9页
Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the seri... Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control. 展开更多
关键词 HDPE sandbreak nets Different porosity structure Checkerboard sand barriers High upright sand fence Sand control effect
下载PDF
Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation 被引量:2
2
作者 Jin Wang Siru Pan Dongping Luo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第2期308-315,共8页
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based ... A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately. 展开更多
关键词 coagulation-microfiltration process cake layer structure iron-based coagulant zeta potential porosity scanning electric microscope
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部