Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and ...Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.展开更多
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch...Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.展开更多
A porous nanocrystalline NiCo_2O_4 compound electrode was obtained.The morphology of the electrode was controlled by altering the concentration of precipitant (NaOH solution).The electrode was consisted of metal subst...A porous nanocrystalline NiCo_2O_4 compound electrode was obtained.The morphology of the electrode was controlled by altering the concentration of precipitant (NaOH solution).The electrode was consisted of metal substrate (Ni) and porous nanocrystalline NiCo_2O_4 film which was stacked by homosized and pretty regular hexagonal nanoparticles,with thinner than 50 nm and about 200 nm in diameter.The electrode exhibits good electrochemical properties compared with Ni electrode.展开更多
基金Jiangsu provincial financial support of Fundamental Conditions and Science and Technology for people’s livelihood for Jiangsu key laboratory of Advanced Metallic Materials(grant number BM2007204)the National Natural Science Foundation of China(grant number 21475021,21427807)+1 种基金the Natural Science Foundation of Jiangsu Province(grant number BK20141331)the Fundamental Research Funds for the Central Universities(grant number2242016K40083)
文摘Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.
基金financially supported by NSFC (Grant Nos.21621091,21373008)the National Key Research and Development Program of China (2016YFB0100202)
文摘Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode.
文摘A porous nanocrystalline NiCo_2O_4 compound electrode was obtained.The morphology of the electrode was controlled by altering the concentration of precipitant (NaOH solution).The electrode was consisted of metal substrate (Ni) and porous nanocrystalline NiCo_2O_4 film which was stacked by homosized and pretty regular hexagonal nanoparticles,with thinner than 50 nm and about 200 nm in diameter.The electrode exhibits good electrochemical properties compared with Ni electrode.