期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and Biocompatibility of Porous Poly(vinylalcohol)-Glycosaminoglycan-Collagen Scaffold 被引量:1
1
作者 LI Qin-hua MO Xiao-hui 《Chinese Journal of Biomedical Engineering(English Edition)》 2013年第1期15-22,共8页
This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering sca... This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture. 展开更多
关键词 poly(vinylalcohol) glycosaminoglycan collagen porous composite scaffold biocompatibility
下载PDF
Article Preclinical evaluation of acute systemic toxicity of magnesium incorporated poly(lactic-co-glycolic acid)porous scaffolds by three-dimensional printing Jing 被引量:2
2
作者 Jing Long Bin Teng +8 位作者 Wei Zhang Long Li Ming Zhang Yingqi Chen Zhenyu Yao Xiangbo Meng Xinluan Wang Ling Qin Yuxiao Lai 《Biomaterials Translational》 2021年第3期272-284,I0001,共14页
Biodegradable polymer scaffolds combined with bioactive components which accelerate osteogenesis and angiogenesis have promise for use in clinical bone defect repair.The preclinical acute toxicity evaluation is an ess... Biodegradable polymer scaffolds combined with bioactive components which accelerate osteogenesis and angiogenesis have promise for use in clinical bone defect repair.The preclinical acute toxicity evaluation is an essential assay of implantable biomaterials to assess the biosafety for accelerating clinical translation.We have successfully developed magnesium(Mg)particles and beta-tricalcium phosphate(β-TCP)for incorporation into poly(lactic-co-glycolic acid)(PLGA)porous composite scaffolds(PTM)using low-temperature rapid prototyping three-dimensional-printing technology.The PTM scaffolds have been fully evaluated and found to exhibit excellent osteogenic capacity for bone defect repair.The preclinical evaluation of acute systemic toxicities is essential and important for development of porous scaffolds to facilitate their clinical translation.In this study,acute systemic toxicity of the PTM scaffolds was evaluated in mice by intraperitoneal injection of the extract solutions of the scaffolds.PTM composite scaffolds with different Mg andβ-TCP content(denoted as PT5M,PT10M,and PT15M)were extracted with different tissue culture media,including normal saline,phosphate-buffered saline,and serum-free minimum essential medium,to create the extract solutions.The evaluation was carried out following the National Standard.The acute toxicity was fully evaluated through the collection of extensive data,including serum/organs ion concentration,fluorescence staining,and in vivo median lethal dose measurement.Mg in major organs(heart,liver,and lung),and Mg ion concentrations in serum of mice,after intraperitoneal injection of the extract solutions,were measured and showed that the extract solutions of PT15M caused significant elevation of serum Mg ion concentrations,which exceeded the safety threshold and led to the death of the mice.In contrast,the extract solutions of PT5M and PT10M scaffolds did not cause the death of the injected mice.The median lethal dose of Mg ions in vivo for mice was determined for the first time in this study to be 110.66 mg/kg,and the safety level of serum magnesium toxicity in mice is 5.4 mM,while the calcium serum safety level is determined as 3.4 mM.The study was approved by the Animal Care and Use Committee of Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences(approval No.SIAT-IRB-170401-YGS-LYX-A0346)on April 5,2017.All these results showed that the Mg ion concentration of intraperitoneally-injected extract solutions was a determinant of mouse survival,and a high Mg ion concentration(more than 240 mM)was the pivotal factor contributing to the death of the mice,while changes in pH value showed a negligible effect.The comprehensive acute systemic toxicity evaluation for PTM porous composite scaffolds in this study provided a reference to guide the design and optimization of this composite scaffold and the results demonstrated the preclinical safety of the as-fabricated PTM scaffold with appropriate Mg content,strongly supporting the official registration process of the PTM scaffold as a medical device for clinical translation. 展开更多
关键词 acute systemic toxicity clinical translation MAGNESIUM median lethal dose porous composite scaffolds
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部