Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively l...Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively low,inevitably limiting their further applications.Cation substitution can primely overcome the problem by regulating the morphology and atomic space occupation to enhance multiple loss mechanisms and impedance matching characteristics.However,universal mechanisms of the effect on EMW absorption performance influenced by cation substitution are still comparatively inadequate,which prospectively requires further exploration.Herein,a series of imidazolic MOFs were fabricated by ultrasonic symbiosis method and tailored by subsequent cation substitution strategy to prepare target porous composites.At a low filling rate and thin thickness,the as-obtained samples reach the optimal reflection loss and effective absorption bandwidth values of–49.81 dB and 7.63 GHz,respectively.The intercoupling between multiple atoms lays a significant foundation for abundant heterogeneous interfaces and defect vacancies,which effectively ameliorate the attenuation mechanisms.Meanwhile,the porous structure introduced by cation substitution reduces the bulk density to enhance the impedance matching and multiple reflections simultaneously.This study provides a helpful idea to exceedingly improve the EMW absorbing performance of imidazolic MOFs-derived composites by cation substitution.展开更多
In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attract...In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.展开更多
Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture ...Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The friction performance of the polyimide (PI) porous composite materials made by moulding method with MoS2 or polytetrafluoroethylene (PTFE) appended are disserted. The result shows that all the PI-based porous c...The friction performance of the polyimide (PI) porous composite materials made by moulding method with MoS2 or polytetrafluoroethylene (PTFE) appended are disserted. The result shows that all the PI-based porous composites have the performance of transfer lubrication in the friction process, and the transfer film is built between the counter friction bodies; with the increasing of the MoS2 amount from 0 to 2096, the friction coefficient trends toward decrease, and the transfer lubricate phenomenon become more obvious; when adding PTFE as synergist to the porous PI + MoS2 composite material, the synergistic effect happens, which can improve the friction performance of the material effectively.展开更多
In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical prop...In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical properties and corrosion performance of the SLM GNPs/Ti were systematically investigated.Results of microstructure characterization show that:1)the density of the SLM GNPs/Ti was improved as compared to that of the SLM Ti;2)abundant TiC particles were formed in the SLM GNPs/Ti.The hardness and compressive strength of the composite increased by 90%(from HV 236 to HV 503)and 14%(from 277 MPa to 316 MPa),respectively,attributed to the uniformly distributed TiC and fine GNPs in the Ti matrix.Electrochemical tests reveal that the corrosion current density of the SLM GNPs/Ti is only 0.328μA/cm^(2),that is about 25%less than that of the SLM Ti.The results indicate that the incorporation of nano-graphene is a potential method to strengthen the Ti by SLM.展开更多
Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity,...Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity, experience model of polyimide porous materials was proposed which is similar to the traditional expe- rience model of the metal porous material. While being pressed, polyimide was found soon to come into elasto- plastic deformation progress in this paper, so the theory model of metal porous material based on Hooker's law was not fit for the polymer any more. A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.展开更多
Microwave sintering method was carried out to prepare porous mullite composite. An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC. The obtaine...Microwave sintering method was carried out to prepare porous mullite composite. An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC. The obtained samples were characterized by XRD analysis, apparent porosity detection, and bending strength measurement. SEM was used to observe the microstructure of the sample. It is found that the porous mullite composite could be prepared through the microwave sintering within 2 h at relatively low temperatures around 1000 ℃. The lasted samples show comparatively superior properties to the products prepared by conventional processing.展开更多
This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering sca...This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture.展开更多
Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and ene...Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.展开更多
Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation ...Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.展开更多
Mosaic structure ZrC-SiC coatings were fabricated on low-density, porous C/C composites via thermal evaporation and an in-situ method. ZrC was packed in a typical lamellar mode, and the mosaic structure was formed by ...Mosaic structure ZrC-SiC coatings were fabricated on low-density, porous C/C composites via thermal evaporation and an in-situ method. ZrC was packed in a typical lamellar mode, and the mosaic structure was formed by the deposition of Zr and Si atoms on the shallow surface of the porous C/C composites.Ablation analysis showed that the defects in the coatings originate from the boundary between the ZrC and holes created by the consumption of SiC at 2500℃. After ablation for 200 s at 3000℃, a dense ZrO2 layer formed on the coating surface, and the defects were sealed owing to the continuous supply of ablative components. The mass and line ablation rates of the Zr C-SiC coatings were-0.46 ± 0.15 mg cm^-2·s^-1 and-1.00± 0.04 μm s^-1, respectively.展开更多
It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction(ORR)catalysts for practical proton exchange membrane fuel cells(PEMFCs).Herein,w...It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction(ORR)catalysts for practical proton exchange membrane fuel cells(PEMFCs).Herein,we achieve novel porous nanocomposites of PtCu_(3) nanoalloys-embedded in the PWO_(x) matrix(PtCu_(3)@PWO_(x)),which has an oxygen container feature.The PtCu_(3)@PWO_(x)/C exhibits an ultrahigh mass activity(MA)of 3.94 A·mgPt−1 for ORR,which is 26.3 times as high as the commercial Pt/C and the highest value ever reported for PtCu-based binary system.Theoretical calculations reveal that the compressive strain and d-band center downshift of Pt intrinsically contribute to the excellent ORR performance.In H_(2)-air PEMFCs at room temperature,furthermore,the PtCu_(3)@PWO_(x)/C delivers a high power density(218.6 mW·cm^(−2)),much superior to commercial Pt/C(131.6 mW·cm^(−2)).In H_(2)-O_(2) PEMFCs,PtCu_(3)@PWO_(x)/C outputs a maximum power density of 420.1 mW·cm^(−2).This work provides an effective idea for designing oxygen-storing ORR catalysts used for practical room-temperature H_(2)-air fuel cells.展开更多
Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
Compressible sensors with highly porous features are ideal candidates for sports and wearable electronics.This study demonstrated for the first time,how the crystalline transformation of poly(vinylidene fluoride)(PVDF...Compressible sensors with highly porous features are ideal candidates for sports and wearable electronics.This study demonstrated for the first time,how the crystalline transformation of poly(vinylidene fluoride)(PVDF)influences aerogel formation and also the compressible sensing properties of a graphene composite.In the present study,two feasible synthesis methods are demonstrated for the fabrication of both PVDF/graphene foams and aerogels with high sensitivity.A three-dimensional network of the PVDF/graphene foams and aerogels is prepared by gelation induced crystallization of PVDF/cyclohexanone by adjusting temperature and time.Herein,PVDF/graphene foams and aerogels with density range of 0.11-0.17 g·cm^(-3) were fabricated.The compressive behaviour of PVDF/graphene aerogels was compared with PVDF/graphene foam samples.Incorporation of 20 wt.%graphene in PVDF aerogel improved the compressive strength significantly by 12 times.The electromechanical performance of foams and aerogels shows that the PVDF/20G(G represents graphene)foam sample has high sensitivity of 396.7 kPa^(-1) to the pressure higher than 400 kPa,while PVDF/40G aerogels have a sensitivity value of 3.0×10^(-3) kPa^(-1) in pressure range lower than 500 kPa.The results provide new pathways to fabricate porous composite with lighter density with high mechanical and electrical properties.展开更多
The isothermal compression tests were carried out on Gleeble-3500 thermal-mechanical simulation machine in a temperature range of 298-473 K and strain rate range of 0.001-10 s^-1. The experimental results show that th...The isothermal compression tests were carried out on Gleeble-3500 thermal-mechanical simulation machine in a temperature range of 298-473 K and strain rate range of 0.001-10 s^-1. The experimental results show that the flow stress data are negatively correlated with temperature for temperature softening, and the strain rates sensitivity of this composite increases with elevating temperature. Based on the experimental data, Johnson-Cook, modified Johnson-Cook and Arrhenius constitutive models were established. The accuracy of these three constitutive models was analyzed and compared. The results show that the values predicted by Johnson-Cook model could not agree well with the experimental values. The prediction accuracy of Arrhenius model is higher than that of Johnson-Cook model but lower than that of the Modified Johnson-Cook model.展开更多
Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference(EMI)shielding.In this review,we summarize the recent progress in developing porous co...Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference(EMI)shielding.In this review,we summarize the recent progress in developing porous composites and structures from emerging two-dimensional(2D)graphene and MXene nanosheets for EMI shielding applications.Important properties contributing to various energy loss mechanisms are probed with a critical discussion on their correlations with EMI shielding performance.Technological approaches to constructing bulk porous structures,such as 2D porous films,three-dimensional(3D)aerogels and foams,and hydrogels,are compared to highlight important material and processing parameters required to achieve optimal microstructures.A comprehensive comparison of EMI shielding performance is also carried out to elucidate the effects of different assembly techniques and microstructures.Distinctive multifunctional applications in adaptive EMI shielding,mechanical force attenuation,thermal management,and wearable devices are introduced,underlining the importance of unique compositions and microstructures of porous composites.The process–structure–property relationships established in this review would offer valuable guidance and insights into the design of lightweight EMI shielding materials.展开更多
Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling perform...Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling performances.Herein,a bimetal ZnMn-based metal-organic framework(ZnMn-MOF)is engineered for in situ conversion of MnO-encapsulated porous carbon(MnO/PC)composite.The templating and activation effects of coordinated Zn endow the converted PC matrix with a highly porous structure.This enhances the compatibility of PC matrix with MnO particles,resulting in the full encapsulation of MnO particles in the PC matrix.More significantly,the PC matrix provides enough void space to buffer the volume change,which fully wraps the MnO without crack or fracture during repeated cycling.As a result,MnO/PC shows high charge storage capability,extraordinary rate performance,and long-term cycling stability at the same time.Thus MnO/PC exhibits high delithiation capacities of 768mA h g^(-1)at 0.1Ag^(-1)and 487mA h g^(-1)at a high rate of 0.7Ag^(-1),combined with an unattenuated cycling performance after 500 cycles at 0.3Ag^(-1).More significantly,MnO/PC demonstrates a well-matched performance with the capacitive activated carbon electrode in a Li-ion capacitor(LIC)full cell.LIC demonstrates a high specific energy of 153.6W h kg^(-1)at 210W kg^(-1),combined with a specific energy of 71.8W h kg^(-1)at a high specific power of 63.0kW kg^(-1).展开更多
This work presents efficient tetracycline(TC) antibiotics adsorption using a functional porous phosphate/carbonate composite(PCC). The PCC was fabricated by anion-exchange of phosphate on the surface of vaterite-phase...This work presents efficient tetracycline(TC) antibiotics adsorption using a functional porous phosphate/carbonate composite(PCC). The PCC was fabricated by anion-exchange of phosphate on the surface of vaterite-phase calcium carbonate particle scaffolds. The PCC,having dense nanoporous network coverage with large surface area and pore volume, exhibited excellent TC adsorption in solution. Its adsorption isotherm fitted well to the Freundlich model, with a maximum adsorption capacity of 118.72 mg/g. The adsorption process was spontaneous, endothermic, and followed pseudo-second-order kinetics. From the XPS analysis, the hydrogen bonding and surface complexation were the key interactions in the process. In addition, a colorimetric TC detection method was developed considering its complexation with phosphate ions, originating from PCC dissolution, during adsorption.The method was used to detect TC in mg/L concentrations in water samples. Thus, the multifunctional PCC exhibited potential for use in TC removal and environmental remediation.展开更多
基金supported by the Natural Science Foundation of Sichuan Province(No.2023NSFSC0435)Sichuan Agricultural University College Student Innovation Training Program Project Funding(No.202210626019)Sichuan Agricultural University double support(035–2221993150).
文摘Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively low,inevitably limiting their further applications.Cation substitution can primely overcome the problem by regulating the morphology and atomic space occupation to enhance multiple loss mechanisms and impedance matching characteristics.However,universal mechanisms of the effect on EMW absorption performance influenced by cation substitution are still comparatively inadequate,which prospectively requires further exploration.Herein,a series of imidazolic MOFs were fabricated by ultrasonic symbiosis method and tailored by subsequent cation substitution strategy to prepare target porous composites.At a low filling rate and thin thickness,the as-obtained samples reach the optimal reflection loss and effective absorption bandwidth values of–49.81 dB and 7.63 GHz,respectively.The intercoupling between multiple atoms lays a significant foundation for abundant heterogeneous interfaces and defect vacancies,which effectively ameliorate the attenuation mechanisms.Meanwhile,the porous structure introduced by cation substitution reduces the bulk density to enhance the impedance matching and multiple reflections simultaneously.This study provides a helpful idea to exceedingly improve the EMW absorbing performance of imidazolic MOFs-derived composites by cation substitution.
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.
基金the National Natural Science Foundation of China(No.90405015)the National Young Elitist Foundation(No.50425208).
文摘Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.
文摘The friction performance of the polyimide (PI) porous composite materials made by moulding method with MoS2 or polytetrafluoroethylene (PTFE) appended are disserted. The result shows that all the PI-based porous composites have the performance of transfer lubrication in the friction process, and the transfer film is built between the counter friction bodies; with the increasing of the MoS2 amount from 0 to 2096, the friction coefficient trends toward decrease, and the transfer lubricate phenomenon become more obvious; when adding PTFE as synergist to the porous PI + MoS2 composite material, the synergistic effect happens, which can improve the friction performance of the material effectively.
基金Projects(51504191,51671152,51874225)supported by the National Natural Science Foundation of ChinaProject(2019GY-188)supported by the Key R&D Projects of Shaanxi,China+2 种基金Project(18JC019)supported by the Industrialization Project of Shaanxi Education Department,ChinaProject(PMMSLKL-901)supported by the State Key Laboratory of Metal Porous Materials,ChinaProject(2020ZDLGY13-10)supported by the Science&Technology Project of Shaanxi,China。
文摘In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical properties and corrosion performance of the SLM GNPs/Ti were systematically investigated.Results of microstructure characterization show that:1)the density of the SLM GNPs/Ti was improved as compared to that of the SLM Ti;2)abundant TiC particles were formed in the SLM GNPs/Ti.The hardness and compressive strength of the composite increased by 90%(from HV 236 to HV 503)and 14%(from 277 MPa to 316 MPa),respectively,attributed to the uniformly distributed TiC and fine GNPs in the Ti matrix.Electrochemical tests reveal that the corrosion current density of the SLM GNPs/Ti is only 0.328μA/cm^(2),that is about 25%less than that of the SLM Ti.The results indicate that the incorporation of nano-graphene is a potential method to strengthen the Ti by SLM.
文摘Based on a series of experiments, the theory of relationship between normal pressure and pores' characters fit for polymer was set up for the first time. On the study of relation between normal pressure and porosity, experience model of polyimide porous materials was proposed which is similar to the traditional expe- rience model of the metal porous material. While being pressed, polyimide was found soon to come into elasto- plastic deformation progress in this paper, so the theory model of metal porous material based on Hooker's law was not fit for the polymer any more. A new elasto-plastic deformation and exhausting model is proposed which shows better agreement with polymer material's pressing process.
基金Funded by the National Natural Science Foundation of China( Nos.50972132 and 51172213)
文摘Microwave sintering method was carried out to prepare porous mullite composite. An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC. The obtained samples were characterized by XRD analysis, apparent porosity detection, and bending strength measurement. SEM was used to observe the microstructure of the sample. It is found that the porous mullite composite could be prepared through the microwave sintering within 2 h at relatively low temperatures around 1000 ℃. The lasted samples show comparatively superior properties to the products prepared by conventional processing.
基金National High-tech Reasearch and Development Program of China(863 Program)grant number:2077AA09Z436+1 种基金Guangdong Project '211'grant number:50621030
文摘This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture.
文摘Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.
基金supported by the National Science and Technol-ogy Major Project(No.J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12202343)the China Postdoctoral Science Foundation(No.2021M702582).
文摘Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.
基金supported by National Science Foundation of China (No. 51405522)the self-fund of State Key Laboratory for Powder Metallurgy (PM-CSU-2015-03)
文摘Mosaic structure ZrC-SiC coatings were fabricated on low-density, porous C/C composites via thermal evaporation and an in-situ method. ZrC was packed in a typical lamellar mode, and the mosaic structure was formed by the deposition of Zr and Si atoms on the shallow surface of the porous C/C composites.Ablation analysis showed that the defects in the coatings originate from the boundary between the ZrC and holes created by the consumption of SiC at 2500℃. After ablation for 200 s at 3000℃, a dense ZrO2 layer formed on the coating surface, and the defects were sealed owing to the continuous supply of ablative components. The mass and line ablation rates of the Zr C-SiC coatings were-0.46 ± 0.15 mg cm^-2·s^-1 and-1.00± 0.04 μm s^-1, respectively.
基金supported by the National Natural Science Foundation of China(No.21571038)Foundation of Guizhou Province(No.2019-5666)+3 种基金Education Department of Guizhou Province(No.2021312)State Key Laboratory of Coal Mine Disaster Dynamics and Control(Chongqing University,No.2011DA105287-ZR202101)State Key Laboratory of Physica Chemistry of Solid Surfaces(Xiamen University,No.202009)the Open Fund of the Key Lab of Organic Optoelectronics&Molecular Engineering(Tsinghua University).
文摘It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction(ORR)catalysts for practical proton exchange membrane fuel cells(PEMFCs).Herein,we achieve novel porous nanocomposites of PtCu_(3) nanoalloys-embedded in the PWO_(x) matrix(PtCu_(3)@PWO_(x)),which has an oxygen container feature.The PtCu_(3)@PWO_(x)/C exhibits an ultrahigh mass activity(MA)of 3.94 A·mgPt−1 for ORR,which is 26.3 times as high as the commercial Pt/C and the highest value ever reported for PtCu-based binary system.Theoretical calculations reveal that the compressive strain and d-band center downshift of Pt intrinsically contribute to the excellent ORR performance.In H_(2)-air PEMFCs at room temperature,furthermore,the PtCu_(3)@PWO_(x)/C delivers a high power density(218.6 mW·cm^(−2)),much superior to commercial Pt/C(131.6 mW·cm^(−2)).In H_(2)-O_(2) PEMFCs,PtCu_(3)@PWO_(x)/C outputs a maximum power density of 420.1 mW·cm^(−2).This work provides an effective idea for designing oxygen-storing ORR catalysts used for practical room-temperature H_(2)-air fuel cells.
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
文摘Compressible sensors with highly porous features are ideal candidates for sports and wearable electronics.This study demonstrated for the first time,how the crystalline transformation of poly(vinylidene fluoride)(PVDF)influences aerogel formation and also the compressible sensing properties of a graphene composite.In the present study,two feasible synthesis methods are demonstrated for the fabrication of both PVDF/graphene foams and aerogels with high sensitivity.A three-dimensional network of the PVDF/graphene foams and aerogels is prepared by gelation induced crystallization of PVDF/cyclohexanone by adjusting temperature and time.Herein,PVDF/graphene foams and aerogels with density range of 0.11-0.17 g·cm^(-3) were fabricated.The compressive behaviour of PVDF/graphene aerogels was compared with PVDF/graphene foam samples.Incorporation of 20 wt.%graphene in PVDF aerogel improved the compressive strength significantly by 12 times.The electromechanical performance of foams and aerogels shows that the PVDF/20G(G represents graphene)foam sample has high sensitivity of 396.7 kPa^(-1) to the pressure higher than 400 kPa,while PVDF/40G aerogels have a sensitivity value of 3.0×10^(-3) kPa^(-1) in pressure range lower than 500 kPa.The results provide new pathways to fabricate porous composite with lighter density with high mechanical and electrical properties.
基金Funded by the Program of International S&T Cooperation(No.2013DFA51230)the Opening Subject Fund of Ningbo University(No.zj1226)
文摘The isothermal compression tests were carried out on Gleeble-3500 thermal-mechanical simulation machine in a temperature range of 298-473 K and strain rate range of 0.001-10 s^-1. The experimental results show that the flow stress data are negatively correlated with temperature for temperature softening, and the strain rates sensitivity of this composite increases with elevating temperature. Based on the experimental data, Johnson-Cook, modified Johnson-Cook and Arrhenius constitutive models were established. The accuracy of these three constitutive models was analyzed and compared. The results show that the values predicted by Johnson-Cook model could not agree well with the experimental values. The prediction accuracy of Arrhenius model is higher than that of Johnson-Cook model but lower than that of the Modified Johnson-Cook model.
基金This project was financially supported by the Research Grants Council(GRF Projects:16205517,16209917,and 16200720)the Innovation and Technology Commission(ITS/012/19)of Hong Kong SAR,and start-up fund for new recruits of PolyU(Nos.P0038855 and P0038858)This project was also supported by the Research Institute for Sports Science and Technology of PolyU(No.P0043535).
文摘Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference(EMI)shielding.In this review,we summarize the recent progress in developing porous composites and structures from emerging two-dimensional(2D)graphene and MXene nanosheets for EMI shielding applications.Important properties contributing to various energy loss mechanisms are probed with a critical discussion on their correlations with EMI shielding performance.Technological approaches to constructing bulk porous structures,such as 2D porous films,three-dimensional(3D)aerogels and foams,and hydrogels,are compared to highlight important material and processing parameters required to achieve optimal microstructures.A comprehensive comparison of EMI shielding performance is also carried out to elucidate the effects of different assembly techniques and microstructures.Distinctive multifunctional applications in adaptive EMI shielding,mechanical force attenuation,thermal management,and wearable devices are introduced,underlining the importance of unique compositions and microstructures of porous composites.The process–structure–property relationships established in this review would offer valuable guidance and insights into the design of lightweight EMI shielding materials.
基金supported by the National Natural Science Foundation of China(21905148)China Postdoctoral Science Foundation(2019T120567 and 2017M612184)+2 种基金the 1000-Talents Planthe World-Class Discipline Programthe Taishan Scholars Advantageous and Distinctive Discipline Program of Shandong province for supporting the research team of energy storage materials.
文摘Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling performances.Herein,a bimetal ZnMn-based metal-organic framework(ZnMn-MOF)is engineered for in situ conversion of MnO-encapsulated porous carbon(MnO/PC)composite.The templating and activation effects of coordinated Zn endow the converted PC matrix with a highly porous structure.This enhances the compatibility of PC matrix with MnO particles,resulting in the full encapsulation of MnO particles in the PC matrix.More significantly,the PC matrix provides enough void space to buffer the volume change,which fully wraps the MnO without crack or fracture during repeated cycling.As a result,MnO/PC shows high charge storage capability,extraordinary rate performance,and long-term cycling stability at the same time.Thus MnO/PC exhibits high delithiation capacities of 768mA h g^(-1)at 0.1Ag^(-1)and 487mA h g^(-1)at a high rate of 0.7Ag^(-1),combined with an unattenuated cycling performance after 500 cycles at 0.3Ag^(-1).More significantly,MnO/PC demonstrates a well-matched performance with the capacitive activated carbon electrode in a Li-ion capacitor(LIC)full cell.LIC demonstrates a high specific energy of 153.6W h kg^(-1)at 210W kg^(-1),combined with a specific energy of 71.8W h kg^(-1)at a high specific power of 63.0kW kg^(-1).
文摘This work presents efficient tetracycline(TC) antibiotics adsorption using a functional porous phosphate/carbonate composite(PCC). The PCC was fabricated by anion-exchange of phosphate on the surface of vaterite-phase calcium carbonate particle scaffolds. The PCC,having dense nanoporous network coverage with large surface area and pore volume, exhibited excellent TC adsorption in solution. Its adsorption isotherm fitted well to the Freundlich model, with a maximum adsorption capacity of 118.72 mg/g. The adsorption process was spontaneous, endothermic, and followed pseudo-second-order kinetics. From the XPS analysis, the hydrogen bonding and surface complexation were the key interactions in the process. In addition, a colorimetric TC detection method was developed considering its complexation with phosphate ions, originating from PCC dissolution, during adsorption.The method was used to detect TC in mg/L concentrations in water samples. Thus, the multifunctional PCC exhibited potential for use in TC removal and environmental remediation.