Glass fibers, cc diameter of 350 mum to 500 mum, were made of glasses with an initial composition of 66. 55iO(2) - 25B(2)O(2) - 8. 5 Na2O. Being heated at 580 C for 24 hours and leached in HCl solution at 90 C: for 12...Glass fibers, cc diameter of 350 mum to 500 mum, were made of glasses with an initial composition of 66. 55iO(2) - 25B(2)O(2) - 8. 5 Na2O. Being heated at 580 C for 24 hours and leached in HCl solution at 90 C: for 12 hours, the glass fibers were made into porous glass fibers, pore size in the range 25nm to 35nm. The influence of the glass composition cold condition on glass phase separation Is discussed. The transparence of the porous glass fibers before and after being charged with sensitive reagents and the anti-resolve characteristics of sensitized reagent charged were also studied. The results have shown that the transparence of porous glass fibers after being charged with sensitive reagents and the anti-resolve characteristics of sensitive reagents charged in the materials were very well. By combining with special sensitive reagents, the porous glass fibers could be made into a series of fiber optic chemical sensors with different characteristics.展开更多
基金Funded by Natural Science Foundation of China(No.69477021)
文摘Glass fibers, cc diameter of 350 mum to 500 mum, were made of glasses with an initial composition of 66. 55iO(2) - 25B(2)O(2) - 8. 5 Na2O. Being heated at 580 C for 24 hours and leached in HCl solution at 90 C: for 12 hours, the glass fibers were made into porous glass fibers, pore size in the range 25nm to 35nm. The influence of the glass composition cold condition on glass phase separation Is discussed. The transparence of the porous glass fibers before and after being charged with sensitive reagents and the anti-resolve characteristics of sensitized reagent charged were also studied. The results have shown that the transparence of porous glass fibers after being charged with sensitive reagents and the anti-resolve characteristics of sensitive reagents charged in the materials were very well. By combining with special sensitive reagents, the porous glass fibers could be made into a series of fiber optic chemical sensors with different characteristics.