Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. T...Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. The flow resistance of fluid flow through a 20-mm glass sphere bed is studied experimentally. It is found that there is a significant deviation between the Ergun equation and the experimental data. A staggered pore-throat model is established to investigate the flow resistance in randomly packed porous media. A hypothesis is made that the particles are staggered in a regular triangle arrangement. An analytical formulation of the flow resistance in random porous media is derived. There are no empirical constants in the formulation and every parameter has a specific physical meaning. The formulation predictions are in good agreement with the experimental data. The deviation is within the range of 25%. This shows that the staggered pore-throat model is reasonable and is expected to be verified by more experiments and extended to other porous media.展开更多
Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties...Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties.Every parameter in the proposed model has clear physical meaning.The results show that the model predictions are ingood agreement with those from the existing experimental data.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB720402)Appling Technology Research and Development Fund from Inner Mongolia,China(Grant No.20130310)College Creative Group Research Program from Inner Mongolia,China(Grant No.NMGIRT1406)
文摘Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. The flow resistance of fluid flow through a 20-mm glass sphere bed is studied experimentally. It is found that there is a significant deviation between the Ergun equation and the experimental data. A staggered pore-throat model is established to investigate the flow resistance in randomly packed porous media. A hypothesis is made that the particles are staggered in a regular triangle arrangement. An analytical formulation of the flow resistance in random porous media is derived. There are no empirical constants in the formulation and every parameter has a specific physical meaning. The formulation predictions are in good agreement with the experimental data. The deviation is within the range of 25%. This shows that the staggered pore-throat model is reasonable and is expected to be verified by more experiments and extended to other porous media.
基金Supported by National Nature Science Foundation of China under Grant Nos.40672156 and D0624005the National Basic Research Program (973 Program) under Grant No.2006CB202200
文摘Based on the tortuous-expanding path/channel model,a micro-mechanism model for porous media is developed.The proposed model is expressed as a function of tortuosity,porosity,resistance coefficient,and fluid properties.Every parameter in the proposed model has clear physical meaning.The results show that the model predictions are ingood agreement with those from the existing experimental data.