Metallic copper is widely used as current collector(CC) for graphite anode of lithium-ion batteries(LIBs) due to its high electrical conductivity and electrochemical stability. However, the large volume density of com...Metallic copper is widely used as current collector(CC) for graphite anode of lithium-ion batteries(LIBs) due to its high electrical conductivity and electrochemical stability. However, the large volume density of commercial copper foil(~8.9 g·cm^(-3)) limits the increase of energy density of battery. Here, copper-coated porous polyimide(Cu@PPI) was prepared by vacuum evaporation as collector for the graphite anode. The sandwich structure connects the copper metal on both sides of the collector with excellent electrical conductivity. Compared to commercial Cu foil, Cu@PPI has lighter mass(≤3.9 mg for disc of 12 mm diameter versus 9.9 mg of ~10 μm Cu foil) and lower volume density(≤3.3 g·cm^(-3)). In addition, the porous structure allows of better adhesion of reactive substances and electrochemical properties than pure Cu foils. It is estimated that the energy density of Cu@PPI should be much higher than that of Cu foil. This strategy should be applicable for other current collectors.展开更多
An oil-impregnated porous polyimide(PI)retainer is used in space rolling bearings to improve the lubrication performance,which depends on the release of lubricant from the pores,and therefore is closely related to the...An oil-impregnated porous polyimide(PI)retainer is used in space rolling bearings to improve the lubrication performance,which depends on the release of lubricant from the pores,and therefore is closely related to the pore size.To study the effect of pore size,in this work,PI materials with different pore sizes were prepared by preheating the retainer tube billet during the limit pressing process,and then the friction tests were conducted with the ball-on-ring mode.The results show that the applied load deforms the pores,allowing the lubricant to be squeezed out from the pore;the centrifugal effect induced by rotation also makes the lubricant migrate out of the pore.Therefore,for the same pore sizes,the friction coefficients decrease with the increasing loads and rotation speeds.In addition,it was found that there exists an optimal pore size for the best lubrication properties of porous PI material.Furthermore,the optimal pore size should be larger for lubricants with high viscosity.The microscopic mechanism for lubricant outflow from pores is clarified by molecular dynamic simulations.The insights gained in this study can guide the preparation of oil-impregnated porous retainers under different working conditions.展开更多
A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide deri...A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide derived from pyromellitic dianhydride/4,4'-oxydianiline as the continuous phase and a thermally labile polyether as the dispersed phase. Spheres of copolymers were generated in a nonaqueous emulsion and then gradually heated to complete the imidization to form a microphase-separated structure. Subsequently, thermal treatment at a slightly reduced pressure removed the labile blocks and produced pores. Under suitable decomposition conditions, the pore size of the porous polyimide was in the range of 200-400nm.展开更多
Lubrication failure accompanying with blackening phenomenon significantly reduces the long-running operational reliability of porous polymide(PPI)lubricated with poly-α-olefin(PAO)oil.Here,the effects of lubrication ...Lubrication failure accompanying with blackening phenomenon significantly reduces the long-running operational reliability of porous polymide(PPI)lubricated with poly-α-olefin(PAO)oil.Here,the effects of lubrication condition and counter-surface chemistry on the blackening failure of PAO impregnated PPI were studied through the comparison of the tribological tests against GCr15 steel ball and Al_(2)O_(3)ceramic ball with and without PAO oil lubrication.Black products were found to be formed on the PAO impregnated PPI surface slid against steel ball or Al_(2)O_(3)ball added with iron nano-particles,but be absent under the conditions without iron or PAO oil.Further analysis indicated that the iron-catalyzed splitting of PAO oil into small molecule alkanes and following the formation of black organic matter should be mainly responsible for the blackening phenomenon.Molecular dynamic(MD)simulations demonstrated that the iron facilitated the separation of hydrogen atom and the following broken of C–C bonds in PAO molecules,final resulting in the splitting of PAO oil.展开更多
Oil-impregnated porous polyimide(iPPI)materials are usually used as retainer for bearings.In these bearings,balls and rings,balls and retainers are two different kinds of contact.In this paper,the friction and wear pr...Oil-impregnated porous polyimide(iPPI)materials are usually used as retainer for bearings.In these bearings,balls and rings,balls and retainers are two different kinds of contact.In this paper,the friction and wear properties of iPPI were investigated using steel(disc)–steel(ball)–iPPI(pin)double-contact friction test rig for simulating the actual contact in bearings.The results show that compared with that of iPPI–steel single contact,the friction coefficient of iPPI–steel in double contacts is lower and decreases with the amount of additional oil.The surface of iPPI in single contact suffers more wear compared with that in double contacts.Different from single contact,the worn surfaces of iPPI in double contacts are blackened.The Raman spectra of worn surfaces of balls and discs indicate thatα-Fe_(2)O_(3) and Fe_(3)O_(4) were formed during rubbing of the double contacts.Many nanoscale iron oxide particles are found on the worn surfaces of iPPI in double contacts;on the contrary,few particles could be found on the surface in single contact.In double-contact friction,the nanoscale wear debris penetrates inside the iPPI material through the process of extruding and recycling of oil,which is the mechanism of the blackening of the iPPI worn surfaces.The studies show that the double-contact friction method is a new and effective method to study the friction in bearings,especially for those with polymer retainer.展开更多
基金supported by the 2019 Foshan Science and Technology Innovation Team(No.1920001000108)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111103)+2 种基金Guangzhou Science and Technology Plan Project(No.202201010867)Science and Technology Major Project of Guangdong Province(No.220110165851234)the National Key R&D Program of China(No.2020YFB0408100).
文摘Metallic copper is widely used as current collector(CC) for graphite anode of lithium-ion batteries(LIBs) due to its high electrical conductivity and electrochemical stability. However, the large volume density of commercial copper foil(~8.9 g·cm^(-3)) limits the increase of energy density of battery. Here, copper-coated porous polyimide(Cu@PPI) was prepared by vacuum evaporation as collector for the graphite anode. The sandwich structure connects the copper metal on both sides of the collector with excellent electrical conductivity. Compared to commercial Cu foil, Cu@PPI has lighter mass(≤3.9 mg for disc of 12 mm diameter versus 9.9 mg of ~10 μm Cu foil) and lower volume density(≤3.3 g·cm^(-3)). In addition, the porous structure allows of better adhesion of reactive substances and electrochemical properties than pure Cu foils. It is estimated that the energy density of Cu@PPI should be much higher than that of Cu foil. This strategy should be applicable for other current collectors.
基金This work was supported by the National Natural Science Foundation of China(U2141243 and 52175158).
文摘An oil-impregnated porous polyimide(PI)retainer is used in space rolling bearings to improve the lubrication performance,which depends on the release of lubricant from the pores,and therefore is closely related to the pore size.To study the effect of pore size,in this work,PI materials with different pore sizes were prepared by preheating the retainer tube billet during the limit pressing process,and then the friction tests were conducted with the ball-on-ring mode.The results show that the applied load deforms the pores,allowing the lubricant to be squeezed out from the pore;the centrifugal effect induced by rotation also makes the lubricant migrate out of the pore.Therefore,for the same pore sizes,the friction coefficients decrease with the increasing loads and rotation speeds.In addition,it was found that there exists an optimal pore size for the best lubrication properties of porous PI material.Furthermore,the optimal pore size should be larger for lubricants with high viscosity.The microscopic mechanism for lubricant outflow from pores is clarified by molecular dynamic simulations.The insights gained in this study can guide the preparation of oil-impregnated porous retainers under different working conditions.
文摘A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide derived from pyromellitic dianhydride/4,4'-oxydianiline as the continuous phase and a thermally labile polyether as the dispersed phase. Spheres of copolymers were generated in a nonaqueous emulsion and then gradually heated to complete the imidization to form a microphase-separated structure. Subsequently, thermal treatment at a slightly reduced pressure removed the labile blocks and produced pores. Under suitable decomposition conditions, the pore size of the porous polyimide was in the range of 200-400nm.
基金supported by the National Natural Science Foundation of China(Nos.52350411 and 52122507)the National Key R&D Program of China(No.2023YFB3405500)+1 种基金Sichuan Science and Technology Program(Nos.2023NSFSC1988 and 23NSFTD0030)the Independent Project of State Key Laboratory of Traction Power(No.2023TPL-T04).
文摘Lubrication failure accompanying with blackening phenomenon significantly reduces the long-running operational reliability of porous polymide(PPI)lubricated with poly-α-olefin(PAO)oil.Here,the effects of lubrication condition and counter-surface chemistry on the blackening failure of PAO impregnated PPI were studied through the comparison of the tribological tests against GCr15 steel ball and Al_(2)O_(3)ceramic ball with and without PAO oil lubrication.Black products were found to be formed on the PAO impregnated PPI surface slid against steel ball or Al_(2)O_(3)ball added with iron nano-particles,but be absent under the conditions without iron or PAO oil.Further analysis indicated that the iron-catalyzed splitting of PAO oil into small molecule alkanes and following the formation of black organic matter should be mainly responsible for the blackening phenomenon.Molecular dynamic(MD)simulations demonstrated that the iron facilitated the separation of hydrogen atom and the following broken of C–C bonds in PAO molecules,final resulting in the splitting of PAO oil.
基金This work was supported by the Natural Science Foundation of Zhejiang Province(No.LY21E050003)Science and Technology Innovation 2025 Major Project of Ningbo(No.2019B10078).
文摘Oil-impregnated porous polyimide(iPPI)materials are usually used as retainer for bearings.In these bearings,balls and rings,balls and retainers are two different kinds of contact.In this paper,the friction and wear properties of iPPI were investigated using steel(disc)–steel(ball)–iPPI(pin)double-contact friction test rig for simulating the actual contact in bearings.The results show that compared with that of iPPI–steel single contact,the friction coefficient of iPPI–steel in double contacts is lower and decreases with the amount of additional oil.The surface of iPPI in single contact suffers more wear compared with that in double contacts.Different from single contact,the worn surfaces of iPPI in double contacts are blackened.The Raman spectra of worn surfaces of balls and discs indicate thatα-Fe_(2)O_(3) and Fe_(3)O_(4) were formed during rubbing of the double contacts.Many nanoscale iron oxide particles are found on the worn surfaces of iPPI in double contacts;on the contrary,few particles could be found on the surface in single contact.In double-contact friction,the nanoscale wear debris penetrates inside the iPPI material through the process of extruding and recycling of oil,which is the mechanism of the blackening of the iPPI worn surfaces.The studies show that the double-contact friction method is a new and effective method to study the friction in bearings,especially for those with polymer retainer.