We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adop...We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adopted to solve the coupled linear stability problem. We investigate the effect of permeability, σ, with fixed porous filling ratio ψ = 1/3 and then the effect of change in porous filling ratio. As shown in the paper, with increasing σ, almost each eigenvalue on the upper left branch has two subbranches at ψ = 1/3. The channel flow with one porous layer inserted at its middle (ψ = 1/3) is more stable than the structure of two porous layers at upper and bottom walls with the same parameters. By decreasing the filling ratio ψ, the modes on the upper left branch are almost in pairs and move in opposite directions, especially one of the two unstable modes moves back to a stable mode, while the other becomes more instable. It is concluded that there are at most two unstable modes with decreasing filling ratio ψ. By analyzing the relation between ψ and the maximum imaginary part of the streamwise phase speed, Cimax, we find that increasing Re has a destabilizing effect and the effect is more obvious for small Re, where ψ a remarkable drop in Cimax can be observed. The most unstable mode is more sensitive at small filling ratio ψ, and decreasing ψ can not always increase the linear stability. There is a maximum value of Cimax which appears at a small porous filling ratio when Re is larger than 2 000. And the value of filling ratio 0 corresponding to the maximum value of Cimax in the most unstable state is increased with in- creasing Re. There is a critical value of porous filling ratio (= 0.24) for Re = 500; the structure will become stable as ψ grows to surpass the threshold of 0.24; When porous filling ratio ψ increases from 0.4 to 0.6, there is hardly any changes in the values of Cimax. We have also observed that the critical Reynolds number is especially sensitive for small ψ where the fastest drop is observed, and there may be a wide range in which the porous filling ratio has less effect on the stability (ψ ranges from 0.2 to 0.6 at σ = 0.002). At larger permeability, σ, the critical Reynolds number tends to converge no matter what the value of porous filling ratio is.展开更多
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation ...This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.展开更多
基金supported by the National Natural Science Foundation of China(40972160 and 51306130)
文摘We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adopted to solve the coupled linear stability problem. We investigate the effect of permeability, σ, with fixed porous filling ratio ψ = 1/3 and then the effect of change in porous filling ratio. As shown in the paper, with increasing σ, almost each eigenvalue on the upper left branch has two subbranches at ψ = 1/3. The channel flow with one porous layer inserted at its middle (ψ = 1/3) is more stable than the structure of two porous layers at upper and bottom walls with the same parameters. By decreasing the filling ratio ψ, the modes on the upper left branch are almost in pairs and move in opposite directions, especially one of the two unstable modes moves back to a stable mode, while the other becomes more instable. It is concluded that there are at most two unstable modes with decreasing filling ratio ψ. By analyzing the relation between ψ and the maximum imaginary part of the streamwise phase speed, Cimax, we find that increasing Re has a destabilizing effect and the effect is more obvious for small Re, where ψ a remarkable drop in Cimax can be observed. The most unstable mode is more sensitive at small filling ratio ψ, and decreasing ψ can not always increase the linear stability. There is a maximum value of Cimax which appears at a small porous filling ratio when Re is larger than 2 000. And the value of filling ratio 0 corresponding to the maximum value of Cimax in the most unstable state is increased with in- creasing Re. There is a critical value of porous filling ratio (= 0.24) for Re = 500; the structure will become stable as ψ grows to surpass the threshold of 0.24; When porous filling ratio ψ increases from 0.4 to 0.6, there is hardly any changes in the values of Cimax. We have also observed that the critical Reynolds number is especially sensitive for small ψ where the fastest drop is observed, and there may be a wide range in which the porous filling ratio has less effect on the stability (ψ ranges from 0.2 to 0.6 at σ = 0.002). At larger permeability, σ, the critical Reynolds number tends to converge no matter what the value of porous filling ratio is.
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
基金sponsored by Institute of Crustal Dynamics (Grant Nos. ZDJ2007-06 and ZDJ2008-08)National 973 Project (2006CB705802)
文摘This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.