期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Review on current development of polybenzimidazole membrane for lithium battery
1
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza Xingke Cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 Lithium batteries separatorS porous separators Polybenzimidazole Membrane
下载PDF
IMPROVING THE PROPERTIES OF HDPE BASED SEPARATORS FOR LITHIUM ION BATTERIES BY BLENDING BLOCK WITH COPOLYMER PE-b-PEG
2
作者 Jun-li Shi Hao Li +2 位作者 Li-feng Fang Zhi-ying Liang 朱宝库 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第2期309-317,共9页
To improve the performances of HDPE-based separators, polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation ... To improve the performances of HDPE-based separators, polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation (TIPS) process. By measuring the composition, morphology, crystallinity, ion conductivity, etc, the influence of PE-b-PEG on structures and properties of the blend separator were investigated. It was found that the incorporated PEG chains yielded higher surface energy for HDPE separator and improved affinity to liquid electrolyte. Thus, the stability of liquid electrolyte trapped in separator was increased while the interfacial resistance between separator and electrode was reduced effectively. The ionic conductivity of liquid electrolyte soaked separator could reach 1.28 ×10^-3 S.cm^-1 at 25℃, and the electrochemical stability window was up to 4.5 V (versus Li^+/Li). These results revealed that blending PE-b-PEG into porous HDPE membranes could efficiently improve the performances of PE separators for lithium batteries. 展开更多
关键词 Polyethylene Poly(ethylene-block-ethylene glycol) copolymer Blend porous separator Thermally inducedphase separation Lithium ion battery separator.
原文传递
Targeted synthesis of novel porous aromatic frameworks with selective separation of CO_2/CH_4and CO_2/N_2 被引量:7
3
作者 Wei Wang Ye Yuan +1 位作者 Fu-Xing Sun Guang-Shan Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第11期1407-1410,共4页
Novel porous aromatic frameworks(PAF-53 and PAF-54) have been obtained by the polymerization of amino compound(p-phenylenediamine and melamine) and cyanuric chloride. They display a certain amount of CO2 adsorptio... Novel porous aromatic frameworks(PAF-53 and PAF-54) have been obtained by the polymerization of amino compound(p-phenylenediamine and melamine) and cyanuric chloride. They display a certain amount of CO2 adsorption capacity and highly selective separation of CO2/CH4 and CO2/N2 as 18.1 and83 by Henry Law respectively. They may be applied as ideal adsorbents to separate and capture CO2. 展开更多
关键词 porous aromatic framework Cyanuric chloride Selective separation CO 2 adsorption
原文传递
Preparation of porous polyimide microspheres by thermal degradation of block copolymers 被引量:3
4
作者 Li Wang Jianjun Lu +2 位作者 Miaoqing Liu Li Lin Jingjing Li 《Particuology》 SCIE EI CAS CSCD 2014年第3期63-70,共8页
A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide deri... A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide derived from pyromellitic dianhydride/4,4'-oxydianiline as the continuous phase and a thermally labile polyether as the dispersed phase. Spheres of copolymers were generated in a nonaqueous emulsion and then gradually heated to complete the imidization to form a microphase-separated structure. Subsequently, thermal treatment at a slightly reduced pressure removed the labile blocks and produced pores. Under suitable decomposition conditions, the pore size of the porous polyimide was in the range of 200-400nm. 展开更多
关键词 Block copolymer sphere Microphase separation Polyimide porous microsphere porous polymer
原文传递
Gas separation using porous cement membrane 被引量:2
5
作者 Weiqi Zhang Maria Gaggl +1 位作者 Gregor J.G.Gluth Frank Behrendt 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期140-146,共7页
Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subjec... Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied. 展开更多
关键词 gas separation porous membrane clean fuel cement membrane inorganic membranes
原文传递
Hierarchical Porous Polymer Beads Prepared by Polymerization-induced Phase Separation and Emulsion-template in a Microfluidic Device 被引量:3
6
作者 Wei-cai Wang Yan-xiong Pan +2 位作者 Kai Shi Chao Peng 姬相玲 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第12期1646-1654,共9页
Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glas... Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glass capillary microfluidic device(GCMD). Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen. The emulsion was added into the GCMD to fabricate the(water-in-oil)-in-water double emulsion droplets. The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets. Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase. The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs. The meso-macropores in these beads were generated by PIPS because of the presence of porogen and gigapores obtained from the emulsion-template. The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry(MIP). New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the carrier continuous phase. The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen. 展开更多
关键词 porous polymer beads Hierarchical Polymerization-induced phase separation Emulsion-template Microfluidic device.
原文传递
Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO_2 separation 被引量:4
7
作者 Peng Cui Xiao-Fei Jing +1 位作者 Ye Yuan Guang-Shan Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第9期1479-1484,共6页
A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as wel... A novel porous aromatic framework, PAF-8, derived from tetraphenylsilane as basic building unit, was successfully synthesized via Friedel-Crafts alkylation reaction. This PAF material had high thermal stability as well as high surface area (785 m^2 g^-1) calculated from the Brunauer-Emmett-Teller (BET) model. Meanwhile, PAF-8 possessed high performances in gas sorption and especially for CO2 separation. 展开更多
关键词 porous aromatic frameworks Friedel-Crafts alkylation Gas sorption CO2 separation Liquid vapor adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部