PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different patho...PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.展开更多
The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging....The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.Herein,strain-induced strategy is developed to construct the Bi–O-bonded interface in Cu porphyrin-based monoatomic layer(PML-Cu)and Bi_(12)O_(17)Br_(2)(BOB),which triggers the surface interface dual polarization of PML-Cu/BOB(PBOB).In this multi-step polarization,the built-in electric field formed between the interfaces induces the electron transfer from con-duction band(CB)of BOB to CB of PML-Cu and suppresses its reverse migration.Moreover,the surface polarization of PML-Cu further promotes the electron converge in Cu atoms.The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB,significantly promoting the adsorption and activation of CO_(2) and CO desorption.The conversion rate of CO_(2) photoreduction to CO for PBOB can reach 584.3μmol g-1,which is 7.83 times higher than BOB and 20.01 times than PML-Cu.This work offers valuable insights into multi-step polarization regulation and active site design for catalysts.展开更多
Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorpt...Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.展开更多
We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intr...We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intrinsic single-molecule electroluminescence has been realized by such decoupling at both bias polarities. The photon emission intensity acquired from the molecular lobe is found stronger than that from the molecular center. These re- sults provide useful information on the understanding of electroluminescent behavior and mechanism in molecular tunnel junctions.展开更多
Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scatt...Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scattering spectra of HsTPyP^6+ monomers and aggregates were also measured. The observed Raman bands of monomeric and aggregated HsTPyP^6+ were assigned on the basis of the observed deuteration shifts and by comparing with the Raman spectra of analogous porphyrin diacids. Aggregation causes moderate downshifts (2-6 cm^-1) for high-frequency modes involving the in-plane CC/CN stretches of the porphyrin core and a dramatic upshift (12 cm^-1) for the out-of-plane saddling mode of the porphyrin ring. The structural changes induced by aggregation and the possible hydrogen bonding interaction between the HsTPyP^6+ molecules in the aggregate are discussed based on the spectral observations.展开更多
Purple-leaf tea plants,as anthocyanin-rich cultivars,are valuable materials for manufacturing teas with unique colors or flavors.In this study,a new purple-leaf cultivar“Zixin”(“ZX”)was examined,and its biochemica...Purple-leaf tea plants,as anthocyanin-rich cultivars,are valuable materials for manufacturing teas with unique colors or flavors.In this study,a new purple-leaf cultivar“Zixin”(“ZX”)was examined,and its biochemical variation and mechanism of leaf color change were elucidated.The metabolomes of leaves of“ZX”at completely purple,intermediately purple,and completely green stages were analyzed using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry(UPLC-QTOF-MS).Metabolites in the flavonoid biosynthetic pathway remained at high levels in purple leaves,whereas intermediates of porphyrin and chlorophyll metabolism and carotenoid biosynthesis exhibited high levels in green leaves.In addition,fatty acid metabolism was more active in purple leaves,and steroids maintained higher levels in green leaves.Saponin,alcohol,organic acid,and terpenoid-related metabolites also changed significantly during the leaf color change process.Furthermore,the substance changes between“ZX”and“Zijuan”(a thoroughly studied purple-leaf cultivar)were also compared.The leaf color change in“Zijuan”was mainly caused by a decrease in flavonoids/anthocyanins.However,a decrease in flavonoids/anthocyanins,an enhancement of porphyrin,chlorophyll metabolism,carotenoid biosynthesis,and steroids,and a decrease in fatty acids synergistically caused the leaf color change in“ZX”.These findings will facilitate comprehensive research on the regulatory mechanisms of leaf color change in purple-leaf tea cultivars.展开更多
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt...An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.展开更多
Facile preparation of cost-effective and durable porous carbon-supported non-precious-metal/nitrogen electrocatalysts for oxygen reduction reaction(ORR)is extremely important for promoting the commercialized applicati...Facile preparation of cost-effective and durable porous carbon-supported non-precious-metal/nitrogen electrocatalysts for oxygen reduction reaction(ORR)is extremely important for promoting the commercialized applications of such catalysts.In this work,the FeCl3-containing porphyrinato iron-based covalent porous polymer(FeCl3·FeP or-CPP)was fabricated in-situ onto porous corncob biomass supports via a simple one-pot method.Subsequent thermal-reduction pyrolysis at 700℃-900℃with CO2 gas as an activating agent resulted in Fe2O3-decorated and N-doped graphitic carbon composite Fe2O3@NC&bio-C with a high degree of graphitization of Fe-involved promotion during pyrolysis(Fe2O3=FeCl3·FePor-CPP derived Fe2O3;NC=N-doped graphene analog;bio-C=the corncob-derived hierarchically porous graphitic biomass carbon framework).The derivedα-Fe2O3 andγ-Fe2O3 nanocrystals(5-10 nm particle diameter)were all immobilized on the N-doped bio-C micro/nanofibers.Notably,the Fe2O3@NC&bio-C obtained at the pyrolysis temperature of 800℃(Fe2O3@NC&bio-C-800),exhibited unusual ORR catalytic efficiency via a 4-electron pathway with the onset and half-wave potentials of 0.96 V and 0.85 V vs.RHE,respectively.In addition,Fe2O3@NC&bio-C-800 also exhibited a high and stable limiting current density of-6.0 mA cm-2,remarkably stability(larger than 91%retention after 10000 s),and good methanol tolerance.The present work represents one of the best results for iron-based biomass material ORR catalysts reported to date.The high ORR activity is attributed to the uniformly distributedα-Fe2O3 andγ-Fe2O3 nanoparticles on the N-enriched carbon matrix with a large specific surface area of 772.6 m^2 g^-1.This facilitates favor faster electron movement and better adsorption of oxygen molecules on the surface of the catalyst.Nevertheless,comparative studies on the structure and ORR catalytic activity of Fe2O3@NC&bioC-800 with Fe2O3@bio-C-800 and NC&bio-C-800 clearly highlight the synergistic effect of the coexisting Fe2O3 nanocrystals,NC,and bio-C on the ORR performance.展开更多
In view of the property of porphyrin's accumulation selectively in tumor, the ftorafur was modified by binding a porphyrin block to improve its tumor targeting and reduce its side effects. These novel porphyrin deriv...In view of the property of porphyrin's accumulation selectively in tumor, the ftorafur was modified by binding a porphyrin block to improve its tumor targeting and reduce its side effects. These novel porphyrin derivatives and metal compounds were synthesized under mild conditions with satisfactory yield, and the constructions of all these new compounds were characterized by UV, IR, MS, ^1H NMR spectra and elementary analysis. Their anticancer activities were evaluated by MTT assay; the results indicated that the anticancer activities of compounds 4a-e were twice as high as that of ftorafur.展开更多
The metal contents of Nigerian coal minerals were analyzed using an atomic absorption spectrophotometer. Calcium, Na, and Fe occurred as the major elements with concentrations ranging from 9 782 μg/g for Ca to 432 μ...The metal contents of Nigerian coal minerals were analyzed using an atomic absorption spectrophotometer. Calcium, Na, and Fe occurred as the major elements with concentrations ranging from 9 782 μg/g for Ca to 432 μg/g for Na whereas K, Mg, Mn, Ni, Cr, Zn, Pb, and Cu, which occurred at trace levels ranged from 673.73 μg/g for Mg to 2.97 μg/g for Mn. The results of the quantitative analysis of porphyrins extracted from the coal minerals showed that Onyeama coal has the highest amount of porphyrins (ca~0.96 μg/g) while Okpara has the lowest (ca~0.30 μg/g). The porphyrins were qualitatively characterized by a combination of thin layer chromatography (TLC), infrared, and ultraviolet-visible spectrophotometers. The results of the mid infrared analysis (MIR) showed the presence of absorption bands at 3 440 cm~1~3 450 cm-1 and 1 640 cm-1~1 680 cm-1 , which are owing to the stretching vibrations of N ─ H and C─ C of aromatics, with C─ H out of plane (oop) bending vibrations at wavenumbers less than 900 cm-1, all of which are characteristic absorptions of porphyrin free base. The ultraviolet-visible data showed prominent peaks at ~400 nm(Soret band) and at wavelength ranges of 535 nm~550 nm(β-band) and 565 nm~ 600 nm (α-band) for the coal porphyrins analyzed. The geochemical significance of the metals and porphyrins in coal minerals are discussed.展开更多
Photodynamic therapy(PDT)is highly effective in treating tumors located near body surface,offering strong tumor suppression and low damage to normal tissue nearby.PDT is also effective for treating a number of other c...Photodynamic therapy(PDT)is highly effective in treating tumors located near body surface,offering strong tumor suppression and low damage to normal tissue nearby.PDT is also effective for treating a number of other conditions.PDT not only provide a precise and selective method for the treatment of various diseases by itself,it can also be used in combination with other traditional therapies.Because PDT uses light as the unique targeting mechanism,it has simpler and more direct targeting capability than traditional therapies.The core material of a PDT system is the photosensitizer which converts light energy to therapeutic factors/substances.Different photosensitizers have their distinct characteristics,leading to different advantages and disadvantages.These could be enhanced or compensated by using proper PDT system.Therefore,the selected type of photosensitizer would heavily influence the overall design of a PDT system.In this article,we evaluated major types of inorganic and organic PDT photosensitizers,and discussed future research directions in the field.展开更多
The potassium bis(fluoro-sulfonyl)imide(KFSI)-based electrolyte has great application prospects in potassium ion batteries (PIBs). However, their development has been limited by the decomposition of electrolytes and t...The potassium bis(fluoro-sulfonyl)imide(KFSI)-based electrolyte has great application prospects in potassium ion batteries (PIBs). However, their development has been limited by the decomposition of electrolytes and the corrosion of Al foils (current collector) at high potential. Here, a N-doping, sulfur-rich chemically bonded porphyrin organic framework (SPOF) with a high potential plateau were synthesized as an anode to lower the redox potential of full cells and further inhibit the corrosion of Al foils. SPOF as anode delivers high reversible capacity (557 mAh g^(−1) at 50 mA g^(−1)), excellent cycling performance (94% capacity retention over 1000 cycles at 500 mA g^(−1)), and superior rate performance. Meanwhile, the ex-situ FTIR, Raman, and HRTEM revealed the stability of N-doping and the reversible covalent sulfur and S–S bonds changes during potassiation/depotassiation. In addition, full cells using SPOF anode and PTCDA cathode showed outstanding performance (high capacity of 300 mAh g^(−1) at 200 mA g^(−1)). And the Al current collector of the full cell was not corroded after 150 cycles. Yet, the Al foils with PTCDA as cathode were seriously corroded. This work provides a new strategy for realizing ultra-high reversible capacity and cyclic stability of PIBs, and also accelerates the process of early commercial application of PIBs.展开更多
A new lanthanide porphyrin, [Smm(H3TPPSHI)]n-nH20 (1, H6TPPS = tetra(4- sulfonatophenyl)porphyrin), has been synthesized through a hydrothermal reaction and structurally characterized by single-crystal X-ray dif...A new lanthanide porphyrin, [Smm(H3TPPSHI)]n-nH20 (1, H6TPPS = tetra(4- sulfonatophenyl)porphyrin), has been synthesized through a hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the P4/mcc space group of tetragonal system: a = 15.3683(12), c = 9.895(2)/k, V = 2337.0(5) A3, C44H29N4OI3SaSm, Mr = 1100.30, Z = 2, Dc = 1.564 g/cm3, S = 1.063,μ(MoKa) = 1.502 mm-1, F(000) = 1102, R = 0.0583 and wR = 0.1666. Compound 1 is characteristic of a three-dimensional (3-D) framework with a slightly distorted square-antiprism eight-coordinated Sm3+ ion. Fluorescent study revealed that compound 1 exhibits an emission in the red region. The fluorescence quantum yield and lifetime of 1 were determined to be 3.5% and 9.1 ns, respectively. UV-vis absorption spectra were also investigated.展开更多
Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electroca...Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes.展开更多
A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, H-NMR, ESI-MS and elemental analysis. The supramolecular 1 self-assembly of Fl-PPTPP with amino-porphyrinatomangane...A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, H-NMR, ESI-MS and elemental analysis. The supramolecular 1 self-assembly of Fl-PPTPP with amino-porphyrinatomanganese [Mn (p-APTPP)Cl] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
In this article,a new 5-(p-maleicaminophenyl)-10,15,20-triphenylporphyrin(H_2P) and relative zinc compound(ZnP) were synthesized and characterized by means of elemental analyses,UV-vis,IR,MS and 1H NMR spectrosc...In this article,a new 5-(p-maleicaminophenyl)-10,15,20-triphenylporphyrin(H_2P) and relative zinc compound(ZnP) were synthesized and characterized by means of elemental analyses,UV-vis,IR,MS and 1H NMR spectroscopies.Furthermore,we have investigated the fluorescence spectroscopy of these compounds.The oxidation and reduction properties of the compounds were studied by the cyclic voltarnmetry,the oxidation-reduction potentials were obtained.展开更多
Transition-metal based M-N_4/C catalysts are appealing for electrocatalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Employing model catalysts, which have well-defined molecular structures an...Transition-metal based M-N_4/C catalysts are appealing for electrocatalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Employing model catalysts, which have well-defined molecular structures and coordination environments, to investigate electrocatalytic performance of M-N_4/C sites for ORR and OER is of fundamental significance. Herein, we reported the use of Co tetra(phenyl)porphyrin 1 and Co tetra(pentafluorophenyl)porphyrin 2 as models to probe the role of Co-N_4/C sites for oxygen electrocatalysis. We showed that Co porphyrin 1 is more efficient than its structural analogue 2 for oxygen electrocatalysis in alkaline aqueous solutions, indicating that the electronrich Co-N_4/C site is more favored when noncovalently adsorbed on carbon supports. This work inspires rational design of reaction-oriented catalysts for sustainable energy storage and conversion technologies.展开更多
The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photos...The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photosensitizers,including hematoporphyrin derivative(HiPorfin),hematoporphyrin monomethyl ether(HMME)and photocarcinorin(PsD-007)in air-saturated dimethylformamide(DMF)solutions were performed by the direct measurement of their near-infrared luminescence.In addition,^(1)O_(2) quencher sodium azide was employed to confirm the ^(1)O_(2) generation from the investigated photosensitizers.The maximal ^(1)O_(2) luminescence occurs at about 1280 nm with full width at half maximum of 30 nm.The ^(1)O_(2) quantum yields were found to be 0.61±0.03,0.60±0.02 and 0.59±0.03 for HiPorfin,HMME and PsD-007,respectively.These results provide that these porphyrin-based photosensitizers produce ^(1)O_(2) under irradiation,which is of significance for the study of their photodynamic action in PDT.展开更多
基金supported by Telethon Italy award GGP15225(to RC and GM)Italian Ministry of Health award RF-2016-02362950(to RC and CZ)+1 种基金the CJD Foundation USA(to RC)the Associazione Italiana Encefalopatie da Prioni(AIEnP)(to RC).
文摘PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.
基金This work was supported by the National Natural Science Foundation of China(Nos.22138011,22205108,22378206)Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces(KLMEACM 202201),Zhejiang Normal University.
文摘The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.Herein,strain-induced strategy is developed to construct the Bi–O-bonded interface in Cu porphyrin-based monoatomic layer(PML-Cu)and Bi_(12)O_(17)Br_(2)(BOB),which triggers the surface interface dual polarization of PML-Cu/BOB(PBOB).In this multi-step polarization,the built-in electric field formed between the interfaces induces the electron transfer from con-duction band(CB)of BOB to CB of PML-Cu and suppresses its reverse migration.Moreover,the surface polarization of PML-Cu further promotes the electron converge in Cu atoms.The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB,significantly promoting the adsorption and activation of CO_(2) and CO desorption.The conversion rate of CO_(2) photoreduction to CO for PBOB can reach 584.3μmol g-1,which is 7.83 times higher than BOB and 20.01 times than PML-Cu.This work offers valuable insights into multi-step polarization regulation and active site design for catalysts.
基金supported by the National Natural Science Foundation of China (21103045, 1210040, 1103312)State Key Laboratory of Heavy Oil at China University of Petroleum (SKCHOP201504)Key Laboratory of Mineralogy and Metallogeny of the Chinese Academy of Sciences at Guangzhou Institute of Geochemistry(KLMM20150103)~~
文摘Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.
文摘We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intrinsic single-molecule electroluminescence has been realized by such decoupling at both bias polarities. The photon emission intensity acquired from the molecular lobe is found stronger than that from the molecular center. These re- sults provide useful information on the understanding of electroluminescent behavior and mechanism in molecular tunnel junctions.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20473078) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.200803580022).
文摘Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scattering spectra of HsTPyP^6+ monomers and aggregates were also measured. The observed Raman bands of monomeric and aggregated HsTPyP^6+ were assigned on the basis of the observed deuteration shifts and by comparing with the Raman spectra of analogous porphyrin diacids. Aggregation causes moderate downshifts (2-6 cm^-1) for high-frequency modes involving the in-plane CC/CN stretches of the porphyrin core and a dramatic upshift (12 cm^-1) for the out-of-plane saddling mode of the porphyrin ring. The structural changes induced by aggregation and the possible hydrogen bonding interaction between the HsTPyP^6+ molecules in the aggregate are discussed based on the spectral observations.
基金This research was supported by The National Natural Science Foundation of China(31370688,31400584)the earmarked fund for China Agriculture Research System(CARS-19)+1 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX(16)1047)Keypoint Research and Invention Program of Jiangsu Province(BE2016417)and FuJian Province“2011 Collaborative Innovation Center”Chinese Oolong Tea Industry Innovation Center(Cultivation)special project(J2015-75).
文摘Purple-leaf tea plants,as anthocyanin-rich cultivars,are valuable materials for manufacturing teas with unique colors or flavors.In this study,a new purple-leaf cultivar“Zixin”(“ZX”)was examined,and its biochemical variation and mechanism of leaf color change were elucidated.The metabolomes of leaves of“ZX”at completely purple,intermediately purple,and completely green stages were analyzed using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry(UPLC-QTOF-MS).Metabolites in the flavonoid biosynthetic pathway remained at high levels in purple leaves,whereas intermediates of porphyrin and chlorophyll metabolism and carotenoid biosynthesis exhibited high levels in green leaves.In addition,fatty acid metabolism was more active in purple leaves,and steroids maintained higher levels in green leaves.Saponin,alcohol,organic acid,and terpenoid-related metabolites also changed significantly during the leaf color change process.Furthermore,the substance changes between“ZX”and“Zijuan”(a thoroughly studied purple-leaf cultivar)were also compared.The leaf color change in“Zijuan”was mainly caused by a decrease in flavonoids/anthocyanins.However,a decrease in flavonoids/anthocyanins,an enhancement of porphyrin,chlorophyll metabolism,carotenoid biosynthesis,and steroids,and a decrease in fatty acids synergistically caused the leaf color change in“ZX”.These findings will facilitate comprehensive research on the regulatory mechanisms of leaf color change in purple-leaf tea cultivars.
基金supported by the National Natural Science Foundation of China (Grant No. 21404014)the Science & Technology Department of Jilin Province (No. 20170101177JC)
文摘An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.
基金the National Natural Science Foundation of China(Nos.21771192,21631003,21871024)the Major Program of Shandong Province Natural Science Foundation(No.ZR2017ZB0315)+2 种基金Fundamental Research Funds for the Central Universities(Nos.18CX06001A,19CX05001A)Research Foundation from China University of Petroleum(East China)(No.Y1510051)Taishan Scholar Program of Shandong Province(ts201712019,ts201511019).
文摘Facile preparation of cost-effective and durable porous carbon-supported non-precious-metal/nitrogen electrocatalysts for oxygen reduction reaction(ORR)is extremely important for promoting the commercialized applications of such catalysts.In this work,the FeCl3-containing porphyrinato iron-based covalent porous polymer(FeCl3·FeP or-CPP)was fabricated in-situ onto porous corncob biomass supports via a simple one-pot method.Subsequent thermal-reduction pyrolysis at 700℃-900℃with CO2 gas as an activating agent resulted in Fe2O3-decorated and N-doped graphitic carbon composite Fe2O3@NC&bio-C with a high degree of graphitization of Fe-involved promotion during pyrolysis(Fe2O3=FeCl3·FePor-CPP derived Fe2O3;NC=N-doped graphene analog;bio-C=the corncob-derived hierarchically porous graphitic biomass carbon framework).The derivedα-Fe2O3 andγ-Fe2O3 nanocrystals(5-10 nm particle diameter)were all immobilized on the N-doped bio-C micro/nanofibers.Notably,the Fe2O3@NC&bio-C obtained at the pyrolysis temperature of 800℃(Fe2O3@NC&bio-C-800),exhibited unusual ORR catalytic efficiency via a 4-electron pathway with the onset and half-wave potentials of 0.96 V and 0.85 V vs.RHE,respectively.In addition,Fe2O3@NC&bio-C-800 also exhibited a high and stable limiting current density of-6.0 mA cm-2,remarkably stability(larger than 91%retention after 10000 s),and good methanol tolerance.The present work represents one of the best results for iron-based biomass material ORR catalysts reported to date.The high ORR activity is attributed to the uniformly distributedα-Fe2O3 andγ-Fe2O3 nanoparticles on the N-enriched carbon matrix with a large specific surface area of 772.6 m^2 g^-1.This facilitates favor faster electron movement and better adsorption of oxygen molecules on the surface of the catalyst.Nevertheless,comparative studies on the structure and ORR catalytic activity of Fe2O3@NC&bioC-800 with Fe2O3@bio-C-800 and NC&bio-C-800 clearly highlight the synergistic effect of the coexisting Fe2O3 nanocrystals,NC,and bio-C on the ORR performance.
文摘In view of the property of porphyrin's accumulation selectively in tumor, the ftorafur was modified by binding a porphyrin block to improve its tumor targeting and reduce its side effects. These novel porphyrin derivatives and metal compounds were synthesized under mild conditions with satisfactory yield, and the constructions of all these new compounds were characterized by UV, IR, MS, ^1H NMR spectra and elementary analysis. Their anticancer activities were evaluated by MTT assay; the results indicated that the anticancer activities of compounds 4a-e were twice as high as that of ftorafur.
文摘The metal contents of Nigerian coal minerals were analyzed using an atomic absorption spectrophotometer. Calcium, Na, and Fe occurred as the major elements with concentrations ranging from 9 782 μg/g for Ca to 432 μg/g for Na whereas K, Mg, Mn, Ni, Cr, Zn, Pb, and Cu, which occurred at trace levels ranged from 673.73 μg/g for Mg to 2.97 μg/g for Mn. The results of the quantitative analysis of porphyrins extracted from the coal minerals showed that Onyeama coal has the highest amount of porphyrins (ca~0.96 μg/g) while Okpara has the lowest (ca~0.30 μg/g). The porphyrins were qualitatively characterized by a combination of thin layer chromatography (TLC), infrared, and ultraviolet-visible spectrophotometers. The results of the mid infrared analysis (MIR) showed the presence of absorption bands at 3 440 cm~1~3 450 cm-1 and 1 640 cm-1~1 680 cm-1 , which are owing to the stretching vibrations of N ─ H and C─ C of aromatics, with C─ H out of plane (oop) bending vibrations at wavenumbers less than 900 cm-1, all of which are characteristic absorptions of porphyrin free base. The ultraviolet-visible data showed prominent peaks at ~400 nm(Soret band) and at wavelength ranges of 535 nm~550 nm(β-band) and 565 nm~ 600 nm (α-band) for the coal porphyrins analyzed. The geochemical significance of the metals and porphyrins in coal minerals are discussed.
基金support received from Sichuan Science and Technology Program(2019JDJQ0028)。
文摘Photodynamic therapy(PDT)is highly effective in treating tumors located near body surface,offering strong tumor suppression and low damage to normal tissue nearby.PDT is also effective for treating a number of other conditions.PDT not only provide a precise and selective method for the treatment of various diseases by itself,it can also be used in combination with other traditional therapies.Because PDT uses light as the unique targeting mechanism,it has simpler and more direct targeting capability than traditional therapies.The core material of a PDT system is the photosensitizer which converts light energy to therapeutic factors/substances.Different photosensitizers have their distinct characteristics,leading to different advantages and disadvantages.These could be enhanced or compensated by using proper PDT system.Therefore,the selected type of photosensitizer would heavily influence the overall design of a PDT system.In this article,we evaluated major types of inorganic and organic PDT photosensitizers,and discussed future research directions in the field.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.U20A20247,51922038,21872045 and 21975069)the Key Project of Research and Development Plan of Hunan Province(Grant 2019SK2071)the Naturel Science Foundation of Hunan Province(2020JJ4169).
文摘The potassium bis(fluoro-sulfonyl)imide(KFSI)-based electrolyte has great application prospects in potassium ion batteries (PIBs). However, their development has been limited by the decomposition of electrolytes and the corrosion of Al foils (current collector) at high potential. Here, a N-doping, sulfur-rich chemically bonded porphyrin organic framework (SPOF) with a high potential plateau were synthesized as an anode to lower the redox potential of full cells and further inhibit the corrosion of Al foils. SPOF as anode delivers high reversible capacity (557 mAh g^(−1) at 50 mA g^(−1)), excellent cycling performance (94% capacity retention over 1000 cycles at 500 mA g^(−1)), and superior rate performance. Meanwhile, the ex-situ FTIR, Raman, and HRTEM revealed the stability of N-doping and the reversible covalent sulfur and S–S bonds changes during potassiation/depotassiation. In addition, full cells using SPOF anode and PTCDA cathode showed outstanding performance (high capacity of 300 mAh g^(−1) at 200 mA g^(−1)). And the Al current collector of the full cell was not corroded after 150 cycles. Yet, the Al foils with PTCDA as cathode were seriously corroded. This work provides a new strategy for realizing ultra-high reversible capacity and cyclic stability of PIBs, and also accelerates the process of early commercial application of PIBs.
基金the financial support of NNSFC(21361013)the NSF of Jiangxi Province(20132BAB203010)+1 种基金the open foundation(No.20130014)of the State Key Laboratory of Structural Chemistrythe science and technology project of Jiangxi Provincial Department of Education(GJJ14554)
文摘A new lanthanide porphyrin, [Smm(H3TPPSHI)]n-nH20 (1, H6TPPS = tetra(4- sulfonatophenyl)porphyrin), has been synthesized through a hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the P4/mcc space group of tetragonal system: a = 15.3683(12), c = 9.895(2)/k, V = 2337.0(5) A3, C44H29N4OI3SaSm, Mr = 1100.30, Z = 2, Dc = 1.564 g/cm3, S = 1.063,μ(MoKa) = 1.502 mm-1, F(000) = 1102, R = 0.0583 and wR = 0.1666. Compound 1 is characteristic of a three-dimensional (3-D) framework with a slightly distorted square-antiprism eight-coordinated Sm3+ ion. Fluorescent study revealed that compound 1 exhibits an emission in the red region. The fluorescence quantum yield and lifetime of 1 were determined to be 3.5% and 9.1 ns, respectively. UV-vis absorption spectra were also investigated.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Scientific Foundation of China(21676160,21825501,and U1801257)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes.
基金We are gratefully acknowledged financial support of this work by the National Natural ScienceFoundation of China (2007 1034) the N.S.F of Guangdong Province of China.
文摘A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, H-NMR, ESI-MS and elemental analysis. The supramolecular 1 self-assembly of Fl-PPTPP with amino-porphyrinatomanganese [Mn (p-APTPP)Cl] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
基金supported by the National Science Foundation of China(No.20801022).
文摘In this article,a new 5-(p-maleicaminophenyl)-10,15,20-triphenylporphyrin(H_2P) and relative zinc compound(ZnP) were synthesized and characterized by means of elemental analyses,UV-vis,IR,MS and 1H NMR spectroscopies.Furthermore,we have investigated the fluorescence spectroscopy of these compounds.The oxidation and reduction properties of the compounds were studied by the cyclic voltarnmetry,the oxidation-reduction potentials were obtained.
基金supported by the "Thousand Talents Program" of China, the Fok Ying-Tong Education Foundation for Outstanding Young Teachers in University, the National Natural Science Foundation of China (21573139, 21773146, 21902099, and 21905167)theChinaPostdoctoralScienceFoundation (2019M650232)+2 种基金the Fundamental Research Funds for the Central Universities (GK202003025)the Research Funds of Shaanxi Normal Universitythe Opening Fund of State Key Laboratory of Heavy Oil Processing。
文摘Transition-metal based M-N_4/C catalysts are appealing for electrocatalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Employing model catalysts, which have well-defined molecular structures and coordination environments, to investigate electrocatalytic performance of M-N_4/C sites for ORR and OER is of fundamental significance. Herein, we reported the use of Co tetra(phenyl)porphyrin 1 and Co tetra(pentafluorophenyl)porphyrin 2 as models to probe the role of Co-N_4/C sites for oxygen electrocatalysis. We showed that Co porphyrin 1 is more efficient than its structural analogue 2 for oxygen electrocatalysis in alkaline aqueous solutions, indicating that the electronrich Co-N_4/C site is more favored when noncovalently adsorbed on carbon supports. This work inspires rational design of reaction-oriented catalysts for sustainable energy storage and conversion technologies.
基金supported by the Program for New Century Excellent Talents in Fujian Province University。
文摘The major cytotoxic agent with most current photosensitizers used in photodynamic therapy(PDT)is widely believed to be singlet oxygen(^(1)O_(2)).Determination of the ^(1)O_(2) quantum yields for porphyrin-based photosensitizers,including hematoporphyrin derivative(HiPorfin),hematoporphyrin monomethyl ether(HMME)and photocarcinorin(PsD-007)in air-saturated dimethylformamide(DMF)solutions were performed by the direct measurement of their near-infrared luminescence.In addition,^(1)O_(2) quencher sodium azide was employed to confirm the ^(1)O_(2) generation from the investigated photosensitizers.The maximal ^(1)O_(2) luminescence occurs at about 1280 nm with full width at half maximum of 30 nm.The ^(1)O_(2) quantum yields were found to be 0.61±0.03,0.60±0.02 and 0.59±0.03 for HiPorfin,HMME and PsD-007,respectively.These results provide that these porphyrin-based photosensitizers produce ^(1)O_(2) under irradiation,which is of significance for the study of their photodynamic action in PDT.