期刊文献+
共找到794篇文章
< 1 2 40 >
每页显示 20 50 100
Texture and Geochemistry of Multi-stage Hydrothermal Scheelite in the Mamupu Cu-Au-Mo(-W)Deposit,Eastern Tibet:Implications for Tungsten Mineralization in the Yulong Belt
1
作者 ZHANG Xiaoxu TANG Juxing +7 位作者 LIN Bin WANG Qin HE Liang YAN Gang SHAO Rui WU Qiang DU Qiu ZHAXI Pingcuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期701-716,共16页
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ... Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit. 展开更多
关键词 SCHEELITE GEOCHEMISTRY Mamupu cu deposit Yulong porphyry copper belt eastern Tibet
下载PDF
镁铁质岩浆周期性补给对云南普朗斑岩Cu-Au矿床的制约:能量约束下热力学模拟
2
作者 张少颖 和文言 肖仪武 《现代地质》 CAS CSCD 北大核心 2024年第4期922-933,共12页
镁铁质岩浆周期性补给于硅酸质岩浆房是形成大型斑岩矿床的关键因素。本文以普朗超大型斑岩Cu-Au矿床为例,通过能量约束体系下的热力学方法模拟浅部硅酸质岩浆房中镁铁质岩浆周期性补给过程,定量评估该过程对形成大型斑岩矿床的控制作... 镁铁质岩浆周期性补给于硅酸质岩浆房是形成大型斑岩矿床的关键因素。本文以普朗超大型斑岩Cu-Au矿床为例,通过能量约束体系下的热力学方法模拟浅部硅酸质岩浆房中镁铁质岩浆周期性补给过程,定量评估该过程对形成大型斑岩矿床的控制作用。普朗矿床成矿前粗粒石英闪长玢岩(CQD)和成矿期石英二长斑岩(QMP)复式岩体中均普遍发育镁铁质暗色微粒包体(MMEs),岩相学特征显示斑岩体中角闪石和黑云母发育韵律环带结构或港湾状溶蚀结构以及针柱状磷灰石的存在均指示发生了镁铁质岩浆混合作用。与单一的分离结晶模型(FC)相比,多阶段岩浆补给-分离结晶模型(R3FC)显示,镁铁质岩浆的补给一方面会抑制长石的结晶,另一方面会促进钙铁镁和铁镁等多类型角闪石的形成,并大幅提前黑云母的结晶次序。以硅酸质岩浆物质摩尔分数变化与挥发分之间相关性为参照,获得的熔体H_(2) O、SCSS(硫化物饱和时硅酸盐熔体中的S含量)和Cl溶解度显示,镁铁质岩浆补给将在岩浆演化早期提高而在晚期降低残余熔体H_(2)O含量(0.16%、0.04%、-0.30%),持续提高熔体SCSS(78.74×10^(-6)、94.44×10^(-6)和137.88×10^(-6))和Cl溶解度(0.04%、0.10%和0.20%),但对Cu含量影响有限。结果表明,能量约束体系下的R3FC和FC热力学模型不仅能够合理解释普朗复式斑岩体矿物结构特征,也定量验证了镁铁质岩浆的补给对成矿岩体异常高H_(2) O、S和Cl含量的贡献。 展开更多
关键词 岩浆混合 热力学模拟 挥发分 普朗斑岩cu-au矿床
下载PDF
Textural and compositional variation of mica from the Dexing porphyry Cu deposit:constraints on the behavior of halogens in porphyry systems
3
作者 Yan Liu Jian-Feng Gao +1 位作者 Liang Qi Kang Min 《Acta Geochimica》 EI CAS CSCD 2023年第2期221-240,共20页
The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from th... The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from the Dexing porphyry deposit could be divided to three types:primary magmatic biotite(Bi-M),hydrothermal altered magmatic biotite(Bi-A)and hydrothermal biotite(Bi-H).The temperature of Bi-M and Bi-H range from 719 to 767℃ and 690 to 727℃,respectively.Both magmatic and hydrothermal biotite have high Fe^(3+)/Fe^(2+)ratios(from 0.18 to 0.24)and XMgvalues(from 0.57 to 0.66),indicating a high oxygen fugacity.BiM has F lower than Bi-A and Bi-H(up to 0.26 wt%),but has Cl(Cl=0.18–0.30 wt%)similar to Bi-A and Bi-H(Cl=0.21–0.35 wt%),suggesting that high Cl/F ratios of early hydrothermal fluid may result from the exsolution from high Cl magma.From potassic alteration zone to phyllic and propylitic alteration zones,Cl decreases with increasing Cu,whereas F increases roughly.Therefore,Cl mostly originate from magma,but enrichment of F possibly results from reaction of fluids and Neoproterozoic strata.Negative correlation between Cl and Cu indicates that Cl might act as an important catalyst during Cu mineralization process.Biotite from Dexing has similar halogen compositions to other porphyry Cu-/Mo deposits in the world.Chlorine contents of hydrothermal fluid may be critical for Cu transportation and enrichment,while consumption of Cl would promote Cu deposition. 展开更多
关键词 HALOGEN Dexing porphyry deposit BIOTITE GEOCHEMISTRY porphyry cu deposit
下载PDF
Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau,SW China 被引量:20
4
作者 HUANG Yong LI Guangming +4 位作者 DING Jun DAI Jie YAN Guoqiang DONG Suiliang HUANG Hanxiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期109-134,共26页
The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz ... The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz diorite porphyry, diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry. The quartz diorite porphyry yielded zircon U-Pb ages of 51.9±0.7 Ma(Eocene) using LA-ICP-MS, whereas the diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry yielded ages ranging from 16.2±0.2 to 14.0±0.2 Ma(Miocene). CuMo-Au mineralization is mainly hosted in the Miocene granodiorite porphyry. Samples from all granitoid plutons have geochemical compositions consistent with high-K calc-alkaline series magmatism. The samples display highly fractionated light rare-earth element(REE) distributions and heavy REE distributions with weakly negative Eu anomalies on chondrite-normalized REE patterns. The trace element distributions exhibit positive anomalies for large-ion lithophile elements(Rb, K, U, Th and Pb) and negative anomalies for high-field-strength elements(Nb and Ti) relative to primitive mantlenormalized values. The Eocene quartz diorite porphyry yielded εNd(t) values ranging from-3.6 to-5.2,(-(87)Sr/-(86)Sr)i values in the range 0.7046–0.7063 and initial radiogenic Pb isotopic compositions with ranges of 18.599–18.657 -(206)Pb/-(204)Pb, 15.642–15.673 -(207)Pb/-(204)Pb and 38.956–39.199 -(208)Pb/-(204)Pb. In contrast, the Miocene granitoid plutons yielded ε(Nd)(t) values ranging from-6.1 to-7.3 and(87Sr/86Sr)i values in the range 0.7071–0.7078 with similar Pb isotopic compositions to the Eocene quart diorite. The Sr-Nd-Pb isotopic compositions of the rocks are consistent with formation from magma containing a component of remelted ancient crust. Zircon grains from the Eocene quartz diorite have ε(Hf)(t) values ranging from-5.2 to +0.9 and two-stage Hf model ages ranging from 1.07 to 1.46 Ga, while zircon grains from the Miocene granitoid plutons have ε(Hf)(t) values from-9.9 to +4.2 and two-stage Hf model ages ranging from 1.05–1.73 Ga, indicating that the ancient crustal component likely derives from Paleo- to Mesoproterozoic basement. This source is distinct from that of most porphyry Cu-Mo-Au deposits in the eastern part of the Gangdese porphyry copper belt, which likely originated from juvenile crust. We therefore consider melting of ancient crustal basement to have contributed significantly to the formation Miocene porphyry Cu-Mo-Au deposits in the western part of the Gangdese porphyry copper belt. 展开更多
关键词 Zircon U-Pb dating Sr-Nd-Pb-Hf isotope Zhunuo porphyry cu-Mo-au deposit Gangdese porphyry copper belt
下载PDF
Geochronology and Geochemistry of the Mamupu Cu-Au Polymetallic Deposit,Eastern Tibet:Implications for Eocene Cu Metallogenesis in the Yulong Porphyry Copper Belt 被引量:3
5
作者 ZHANG Xiaoxu LIN Bin +9 位作者 TANG Juxing HE Liang LIU Zhibo WANG Qin SHAO Rui DU Qiu SILANG Wangdui CIREN Ouzhu GUSANG Quzhen CIDAN Zhongga 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1221-1236,共16页
The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrit... The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrite in breccia,within the plate-like carbonate interlayer,being closely related to chloritization(e.g.,chlorite,magnetite and epidote)and skarnization(e.g.,diopside,tremolite and garnet).The ore-related quartz syenite porphyry(QSP)and granodiorite porphyry(GP)were emplaced at 40.1±0.2 Ma and 39.9±0.3 Ma,respectively.The QSP of Mamupu is an alkaline-rich intrusion,relatively enriched in LREE,LILE,depleted in HFSE,with no significant negative Eu and Ce anomalies,slightly high(^(87)Sr/^(86)Sr)i,lowε_(Nd)(t),uniform(^(206)Pb/^(204)Pb)i andε_(Hf)(t)values,which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust.The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB.High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits.The QSP has similar high magmatic oxidation states and water content to the Yulong deposit,which indicates that the Mamupu has a high prospecting potential.Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions,as well as differences in the surrounding rocks. 展开更多
关键词 skarn cu deposit GEOCHRONOLOGY GEOCHEMISTRY Mamupu Yulong porphyry copper belt Tibet
下载PDF
Geochronology and Geochemistry of Metallogenetic Porphyry Bodies from the Nongping Au-Cu Deposit in the Eastern Yanbian Area, NE China: Implications for Metallogenic Environment 被引量:7
6
作者 REN Yunsheng JU Nan +3 位作者 ZHAO Hualei WANG Hui HOU Kejun LIU Shen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期619-629,共11页
The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichm... The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichment in sodium, and classified into sodic rocks of low-K tholeiitic basalt series. Except slightly low Sr content, the rock basically has the geochemical characteristics of the adakite: relatively high A12O3 content, relatively low MgO content, depletion in Y and Yb; relative enrichment in large ion lithophile elements (LILEs) and light rare-earth elements (LREEs), relatively low content of high field strength elements (HFSEs); positive Eu anomaly or weak negative Eu anomaly. In situ zircon dating technology LA-MC-ICP-MS was used to conduct single-grain zircon dating of biotite granodiorite porphyry, and the results show that the age of metallogenetic porphyry body is 100.04±0.88 Ma, indicating that the porphyry bodies were emplaced in the late Cretaceous period. According to the regional tectonic setting and the comparison with the same kind of deposits, we think that the metallogenetic porphyry bodies in the Nongping Au-Cu deposit have a close genetic connection with the subduction of the Pacific plate in the late Yanshanian period. The adakitic magma generated from partial melting of the subducting plate has high formation temperature, high oxygen fugacity, and volatile constituents' enrichment, so it is helpful for enrichment of metallogenetic elements and plays an important role in the formation of porphyry Au-Cu deposits in this region. 展开更多
关键词 porphyry body zircon U-Pb dating adakitic rock Nongping au-cu deposit
下载PDF
^40Ar/^39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au)Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet,China:Implication for Generation of Super-Large Deposit 被引量:36
7
作者 LIN Bin CHEN Yuchuan +6 位作者 TANG Juxing WANG Qin SONG Yang YANG Chao WANG Wenlei HE Wen ZHANG Lejun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期602-616,共15页
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat... The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma. 展开更多
关键词 40Ar/39Ar and Rb-Sr dating Tiegelongnan cu-(au deposit Bangong Co-Nujiang metallogenic belt TIBET Proto-Tethys
下载PDF
Petrogenesis and Tectonic Significance of the Three-Period Porphyries from the Daruoluolong Cu(Au) Deposit, Tibet, China 被引量:2
8
作者 GAO Ke SONG Yang +3 位作者 LIU Zhibo FANG Xiang LI Faqiao LI Haifeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第3期1267-1269,共3页
Objective The Daruoluolong deposit is the first high-grade Cu(Au)deposit discovered in the middle section of the Bangonghu-Nujiang(herein after referred to as Ban-Nu)metallogenic belt,which has not been documented abo... Objective The Daruoluolong deposit is the first high-grade Cu(Au)deposit discovered in the middle section of the Bangonghu-Nujiang(herein after referred to as Ban-Nu)metallogenic belt,which has not been documented about previously.This deposit is located in Shuanghu County of northern Tibet,and its geotectonic position belongs to the 展开更多
关键词 the Daruoluolong cu (au deposit Tectonic Significance
下载PDF
^(40)Ar/^(39)Ar Dating of the Shaxi Porphyry Cu-Au Deposit in the Southern Tan-Lu Fault Zone, Anhui Province 被引量:6
9
作者 YANG Xiaoyong ZHENG Yongfei +2 位作者 XIAO Yilin DU Jianguo SUN Weidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期477-487,共11页
Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages ... Four samples of plagioclase and biotite from the Shaxi porphyry in the lower part of the Yangtze metallogenic belt were analyzed for age determination with the ^40 Ar/^39Ar method. The results yield reproducible ages of 126 Ma to 135 Ma with a high level of confidence according to the agreement between isochron and plateau ages. The four Ar-Ar ages are relatively consistent within the analytical error. These ages are also consistent with, but more precise than, previous K-Ar and Rb-Sr ages and thus provide better constraints on the time of porphyry formation and associated Cu-Au mineralization along the middle to lower part of the Yangtze metallogenic belt. The ages of 126 to 135 Ma are interpreted to represent the intrusive time of the Shaxi porphyry, so that the Cu-Au mineralization should have occurred later due to the post-magmatic hydrothermal event. 展开更多
关键词 Shaxi porphyry-type cu-au deposit ^40 Ar/^39 Ar dating Yangtze metallogenic belt Tancheng -Lujiang fault belt East China
下载PDF
Geochronological Constraints on the Haftcheshmeh Porphyry Cu-Mo-Au Ore Deposit, Central Qaradagh Batholith, Arasbaran Metallogenic Belt, Northwest Iran
10
作者 Shohreh HASSANPOUR Mohsen MOAZZEN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第6期2109-2125,共17页
The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt (AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to g... The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt (AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to granodiorite intruded into an older gabbro - diorite intrusion. 40Ar/39Ar analyses of primary magmatic hornblende from the granodiorite porphyry and gabbro - diorite show plateau ages of 26.41 ± 0.59 Ma, with an inverse isochron age of 25.9 ± 1.0 Ma and a plateau age of 27.47 ± 0.17 Ma, with an inverse isochron age of 27.48 ± 0.35 Ma for these two rock types, respectively. Comparing these new age data with those from the nearby Sungun (20.69 ± 0.35 Ma) and Kighal porphyry deposits defines a northwest-southeast Cu-Mo-Au mineralization zone extending for 20 km over the time span of-27 to 20 Ma. Geochemically, Haftcheshmeh rocks are calc-alkaline with high potassium affinities with tectonic setting in relation to volcanic arc setting. Large ion lithophile elements (LILE) such as Th, U and K show enrichment on a primitive mantle normalized diagram (specially Pb), and are depleted in high field strength elements (HFSE) such as Ti and Nb, pointing to a mantle magma source contamination with crustal materials by subducted oceanic crust. 展开更多
关键词 40Ar/39Ar dating Haftcheshmeh porphyry cu-Mo deposit Arasbaran Metallogenic Belt Northwest Iran
下载PDF
Geological, Alteration and Mineralization Characteristics of Ali Javad Porphyry Cu-Au Deposit, Arasbaran Zone, NW Iran
11
作者 Behzad Hajalilou Mehraj Aghazadeh 《Open Journal of Geology》 2016年第8期859-874,共17页
Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, ... Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, followed by extensive magmatism in Cenozoic and Quaternary periods. Porphyry type mineralization developed in Ali Javad quartz monzonitic porphyry stock and Eocene pyroclastic and volcanic country rocks. Ali Javad porphyry intrusion has shoshonitic nature and shows characteristics of volcanic arc granitoids that it is have been emplaced in a post-collision tectonic setting. Alteration zones at the deposit demonstrated zoning which is comparable with Lowel-Guilbert model proposed for quartz-monzonite type porphyry copper deposits. Phyllic, argillic, silicic and propylitic alteration zones were observed at the surface while potassic alteration zone could be observed at depth in drill core samples. Mineralization was recognized both as supergene and hypogene, the latter was as veins, veinlets and disseminations. Dominant hypogene minerals were chalcopyrite, bornite, molybdenite, pyrite and magnetite while chalcocite, covellite and limonite were dominant supergene minerals. Four mineralization zones were observed in the deposit as leached, transitional, supergene and hypogene zones. Average grades were 0.75% for copper and 1.86 ppm for gold with 81.5 Mt proved reserve for copper and 37.8 Mt for gold. 展开更多
关键词 GEOLOGY ALTERATION MINERALIZATION Ali Javad porphyry cu-au deposit Iran
下载PDF
富碱斑岩成因与Cu—Mo—Au矿床成矿作用——以金沙江—红河富碱斑岩成矿带为例
12
作者 杨航 王蝶 +2 位作者 吴鹏 王峰 陈福川 《地质论评》 CAS CSCD 北大核心 2023年第5期1669-1693,共25页
富碱斑岩因其产出构造环境独特、岩石类型特殊,并常与铜多金属矿床密切相关,而受到广泛关注。笔者等在回顾相关研究进展的基础上,通过岩石成因和构造环境、岩浆性质和岩浆源区等方面的综合研究,探讨了金沙江—红河富碱斑岩成矿带富碱岩... 富碱斑岩因其产出构造环境独特、岩石类型特殊,并常与铜多金属矿床密切相关,而受到广泛关注。笔者等在回顾相关研究进展的基础上,通过岩石成因和构造环境、岩浆性质和岩浆源区等方面的综合研究,探讨了金沙江—红河富碱斑岩成矿带富碱岩浆成矿作用及成岩成矿机制。系统的矿床地质、年代学、地球化学等研究表明:①金沙江—红河富碱斑岩成矿带内成岩成矿作用集中于43~32 Ma,成矿富碱斑岩系始新世—渐新世I型钾玄质花岗斑岩,是印—亚大陆后碰撞背景下大陆内部大型走滑和伸展等动力过程诱导的岩浆活动产物,金沙江和哀牢山—红河断裂的差异走滑运动可能控制了成矿带差异性成岩成矿事件;②成矿带北段以Cu—Mo为主的成矿富碱斑岩源自新元古代下地壳的部分熔融,且源区有富集地幔和亏损地幔物质的加入,而南段以Cu—Au或Cu(—Mo—Au)为主的成矿富碱斑岩源自具有不同程度富集地幔物质加入的新生下地壳的部分熔融;③带内以Cu为主的斑岩—矽卡岩型矿床中成矿富碱斑岩的氧逸度(ΔFMQ)与矿床规模具有正相关性。除受氧逸度控制外,源区高K2O含量有利于斑岩—矽卡岩型Au矿床的形成。该研究对金沙江—红河富碱斑岩成矿带乃至同类矿床研究和找矿勘查具有理论和实际意义。 展开更多
关键词 富碱斑岩 岩石成因 cu—Mo—au矿床 岩浆性质 岩浆源区 金沙江—红河成矿带
下载PDF
Geology,Geochemistry and Zircon U-Pb Geochronology of Porphyries in the Dabate Mo-Cu Deposit,Western Tianshan,China:Petrogenesis and Tectonic Implications 被引量:8
13
作者 DUAN Shigang ZHANG Zuoheng +1 位作者 WANG Dachuan LI Fengming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期530-544,共15页
The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the D... The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting. 展开更多
关键词 porphyry cu-Mo deposit post-collisional extension zircon U-Pb age PETROGENESIS Dabate TIANSHAN Proto-Tethys
下载PDF
Late Jurassic adakitic ore-bearing granodiorite porphyry intrusions in the Xiaokele porphyry Cu(–Mo)deposit,Northeast China:implications for petrogenesis and tectonic setting 被引量:1
14
作者 Yonggang Sun Bile Li +5 位作者 Zhonghai Zhao Qingfeng Ding Fanbo Meng Xusheng Chen Ye Qian Yujin Li 《Acta Geochimica》 EI CAS CSCD 2021年第5期702-717,共16页
The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusio... The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusions.Potassic,phyllic,and propylitic alteration zones develop from center to edge.In this paper,we present zircon LA–ICP–MS U–Pb ages,zircon Hf isotopic compositions,and whole-rock geochemistry of the ore-bearing granodiorite porphyries from the Xiaokele Cu(–Mo)deposit.Zircon U–Pb dating suggests that the Xiaokele granodiorite porphyries were emplaced at 148.8±1.1 Ma(weighted-mean age;n=14).The Xiaokele granodiorite porphyries display high SiO2,Al2O3,Sr,and Sr/Y,low K2O/Na2O,MgO,Yb,and Y,belonging to high-SiO2 adakites produced by partial melting of the subducted oceanic slab.Marine sediments were involved in the magma source of the Xiaokele granodiorite porphyries,as indicated by enriched Sr–Nd isotopic compositions(eNd(-t)=-1.17–-0.27),low positive zircon eHf(t)values(0.4–2.2),and high Th contents(4.06–5.20).The adakitic magma subsequently interacted with the mantle peridotites during ascent through the mantle wedge.The Xiaokele granodiorite porphyries were derived from slab melting during the southward subduction of the Mongol–Okhotsk Ocean. 展开更多
关键词 Xiaokele porphyry cu(–Mo)deposit ADAKITE Slab melting Mongol–Okhotsk Ocean Northern Great Xing’an Range
下载PDF
Geochemical Characteristics and Significance of Major Elements, Trace Elements and REE in Mineralized Altered Rocks of Large-Scale Tsagaan Suvarga Cu-Mo Porphyry Deposit in Mongolia 被引量:3
15
作者 方维萱 杨社锋 +2 位作者 刘正桃 韦星林 张宝琛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期759-769,共11页
The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The miner... The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-beating argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and pro- pylitization zone. The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase. Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system. Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification. The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied. The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system. Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China. 展开更多
关键词 mongolia tsagaan suvarga porphyry cu-Mo deposit wall rock alteration fractionation mode positive Eu anomaly rare earths
下载PDF
Contrast in Fluid M etallogeny between the Tianmashan Au-S Deposit and the Datuanshan Cu Deposit in Tongling,Anhui Province 被引量:2
16
作者 LEE Hyun Koo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第1期116-124,共9页
A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongli... A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion 展开更多
关键词 fluid inclusion fluid ore-forming process contrast in fluid metallogeny au-S ore deposit cu ore deposit magmatic fluid groundwater fluid TONGLING Anhui Province
下载PDF
Geochemical studies on REE and trace elements from several Cu-Au deposits along the lower Yangtze metallogenic valley, central-southern Anhui Province 被引量:1
17
作者 杨晓勇 黄晶 +1 位作者 孙立广 王奎仁 《Chinese Journal Of Geochemistry》 EI CAS 2007年第2期170-181,共12页
The Yangtze Valley was one of the most important metallogenic regions during the Jurassic-Cretaceous period in East China, where more than 200 polymetallic Cu-Fe-Au, Mo, Zn, Pb, Ag deposits have been found. Trace elem... The Yangtze Valley was one of the most important metallogenic regions during the Jurassic-Cretaceous period in East China, where more than 200 polymetallic Cu-Fe-Au, Mo, Zn, Pb, Ag deposits have been found. Trace elements were chemically analyzed and the relevant data were collected from literature for the Yanshanian (Mesozoic) igneous rocks which have close relationship with Cu-Au mineralization. Copper mineralization in the lower Yangtze Valley can be divided into three major types: skarn type, porphyry type and volcanic type. The porphyry type is of rare occurrence, such as the Shaxi porphyry copper deposit in the northern part of the lower Yangtze metallogenic valley. This paper focuses on the REE and trace element geochemistry of several Cu-Au deposits along the lower part of Yangtze metallogenic valley in Anhui. The results showed that there are differences in REE distribution for these four types of Cu-Au mineralization, which confine the sources of REE and trace elements as well as other mantle and transitional compatible elements. The results of both REE and trace element geochemical studies showed that these elements with different characteristics have different origins, probably representing different sources of Cu-Au deposits in the deep crust and upper mantle environments. The 40Ar/39Ar dating of one biotite sample gave an age of 131 Ma with a high level of confidence, which represents the age of formation of the Shaxi porphyrite intrusive with porphrytic Cu-Au mineralization, which is consistent with that of the majority of the adjacent acid intrusives with mass Cu-Au mineralization along the Yangtze metallogenic belt in the Yanshanian period (Mesozoic). This is the first attempt to use the high precision method to date the Shaxi porphyrite intrusive. 展开更多
关键词 安徽中南部 长江下游 铜-金矿床 成矿带 REE 微量元素 地球化学研究
下载PDF
Geology,Geochemistry,and Genesis of the Tongcun Reduced Porphyry Mo(Cu) Deposit,NW Zhejiang Province,China
18
作者 TANG Yanwen LI Xiaofeng +6 位作者 XIE Yuling HUANG Cheng WEI Hao CAI Jiali YIN Yifan QIN Chaojian LIU Rong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期766-782,共17页
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregu... The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO2-CH4 single phase FIs,2) CO2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO2- and CH4-rich FIs of the CO2-CH4-H2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO2-rich FIs of the CO2-H2O-NaCl system and liquid-rich FIs of the H2O-NaCl system.For the CO2-CH4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm^3 to 0.8 g/cm^3;for two- or three-phase FIs of the CO2-CH4-H2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm^3 to 1.0 g/cm^3,respectively.For CO2-H2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm^3 to 1.0 g/cm^3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO2 and CH4 contents and reducibility(indicated by the presence of CH4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The 〈S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the 〈JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.〈534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area. 展开更多
关键词 Tongcun Mo cu deposit fluid inclusions reduced ore fluids porphyry type isotopegeochemistry ore genesis
下载PDF
Source of the Ore-forming Adakitic Porphyry at the Beiya Super-large Au Deposit, Western Yangtze Craton: New Evidence from Zircon U-Pb Ages of the Amphibolite Xenoliths
19
作者 LIU Siqi ZHENG Yuanchuan +3 位作者 SHEN Yang HOU Zengqian WANG Lu WANG Zixuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第1期208-209,共2页
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha... Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source. 展开更多
关键词 Western Yangtze Craton New Evidence from Zircon U-Pb Ages of the AMPHIBOLITE XENOLITHS Source of the ORE-FORMING Adakitic porphyry at the Beiya SUPER-LARGE au deposit
下载PDF
Where were the Metal, Sulfur and Water from in the Postcollisional Porphyry Cu Deposit at Qulong in South Tibet?
20
作者 QU Huanchun SUN Maoyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期753-754,共2页
Objective Most porphyry Cu deposits (PCDs) were formed in association with subduction-related calc-alkaline magmas, which occurred widely in magmatic arcs worldwide. A widely accepted model is that such deposits wer... Objective Most porphyry Cu deposits (PCDs) were formed in association with subduction-related calc-alkaline magmas, which occurred widely in magmatic arcs worldwide. A widely accepted model is that such deposits were formed from hydrothermal fluids exsolved from hydrous, high oxygen fugacity, sulfur-rich arc magmas, derived from a mantle wedge metasomatized by subduction-slab fluids. Recent studies have documented that such deposits may also occur in post-collisional settings, e.g., the Gangdese porphyry Cu belts in Tibet. The formation of such PCDs is very difficult to be explained by the classic PCDs model, which results in an alternative model to be proposed to interpret the genesis of PCDs in such settings. In this alternative model, metals and sulfur of the post-collisional PCDs were generally thought to be derived from a subduction-modified thickened lower crust, rather than a metasomatized mantle wedge. However, our detailed analysis suggests that the sources of metals and sulfur for the PCDs in post-collisional settings still cannot be well explained by the lower-crust melting model. 展开更多
关键词 Where were the Metal Sulfur and Water from in the Postcollisional porphyry cu deposit at Qulong in South Tibet cu
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部