Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision...Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.展开更多
1 Introduction The eastern Tianshan region covers around 60000 km2in area and is located in the eastern part of Xinjiang.The district contains various types mineral commodities including Cu,Ni,Au,Fe,Pb and Zn(Wang et ...1 Introduction The eastern Tianshan region covers around 60000 km2in area and is located in the eastern part of Xinjiang.The district contains various types mineral commodities including Cu,Ni,Au,Fe,Pb and Zn(Wang et al.,2006).The Dannanhu belt in eastern part of the area is interpreted as a volcanic arc and forms an important mineralized zone bordered by the Turpan-Hami Basin to the north and Kanggur back-arc basin to the south.展开更多
Recent examination and assessment about the porphyry copper deposits in Gangdise metallogenic belt in southern Tibet have revealed that these porphyry copper deposits are highly prospective. Several methods have been ...Recent examination and assessment about the porphyry copper deposits in Gangdise metallogenic belt in southern Tibet have revealed that these porphyry copper deposits are highly prospective. Several methods have been used for the isotopic dating of the Qulong, Tinggong and Chongjiang porphyry copper deposits, which gives out a petrogenetic age of 17.58±0.74Ma (single-zircon dating of SHRIMP), a metallogenetic age of 15.99±0.32Ma (Re-Os isochron dating) and an alteration age ranging between 12.00Ma and 16.5Ma (K-Ar dating). The metallogenetic age is in general agreement with the alteration age. It can be seen that the petrogenetic and metallogenetic ages for the porphyry copper deposits in Gangdise metallogenic belt are noticeably later than the age for the collisional granitic intrusion in this belt. The authors contend that the porphyry copper deposits in the study area were formed in a post-collisional extensional tectonic setting, and are closely related to the delamination of the mountain roots of the orogenic belts and the uplifting of the Qinghai-Tibet Plateau.展开更多
Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibe...Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibet geodepression. and nearly 500 km of the Himalayan Yarlung Zangbo plate subduction zone of nearly E-W trend. it is a relatively typical intracontinental rejuvenated platform-type porphyry copper belt. Ore-bearing porphyry masses in the belt mainly represented by monzogranite-porphyry occurring as stocks in variegated sandshale of the lower Upper Triassic Jiapila Fromation and its overlying and underlying copper-bearing strata. They are characterized by enrichment in K. CI and LREE. abundant fluid inclusions and a distinct porphyroblastic texture. The oxygen. hydrogen. strotium. lead and sulfur isotopic values of the rock show the feature of crust-mantle mixing.The Orebodies are plpe-shaped stratoid; the mineralization is dominated by Cu and Mo, accompanied by Fe. Co. Au. Ag. Bi. W. Pb. Zn. and Pt-group elements. Alteration is strong. marked mainly by potassic alteration, silicification. skarnization and propylitization. The formation of this type of deposit largely progressed through two stages. The first stage was the stage of formation of Cu-bearing source beds. It occurred in the Triassic. when a transgressive copper-bearing formation was deposited on the western margin of the Qamdo Bay. which was represented by intermediate-acid volcanic rocks and variegated sandshale in the lower part. dolomitic carbonate rocks in the middle and black carbonaceous sandshale in the upper part. In the second stage. composite porphyry copper deposits were formed. This stage took place in the Paleogene. when this district was in a stage of platform rejuvenation. forming a series of NNW-trending deep faults. so that Na, K. Cl. H2O and CO2-rich hydrothermal fluids from the depths were injected into the upper crust and replaced and melted copper-bearing sialic rocks of the upper crust. e. g. the Triassic copper-bearing rock series in the Yulong area. to form porphyroblastic cooper-bearing intermediate-acid porphyry.展开更多
1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.C...1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of展开更多
Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, sig...Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.展开更多
Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran a...Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.展开更多
The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metal...The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metallogenic features and ore forming conditions, copper gold deposits in this district are ascribed to two groups: the epithermal group which can be further divided into tellurium gold type, quartz adularia type and quartz manganoansiderite type; the magmatic hydrothermal group which includes porphyry Cu Au deposit, breccia pipe porphyry type Au Cu deposit and skarn type Au Cu deposit. In this paper, characteristics of six typical shoshonite hosted Cu Au deposits are outlined. Additionally, the factors that control the metallogenesis and distribution of these Cu Au deposits are discussed preliminarily.展开更多
基金supported by the National Key Research and Development Program of China (2022YFC2905001)the National Natural Science Foundation of China (42272093,42230813)+1 种基金China Scholarship Council projectthe Geological Survey project (DD20230054)
文摘Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.
基金financially supported by Chinese National Basic Research 973 Program(2014CB440803)the National Natural Science Foundation of China(41572077)China Geological Survey Bureau(12120114065801,121201001000150010 and 121201004000150017-43)
文摘1 Introduction The eastern Tianshan region covers around 60000 km2in area and is located in the eastern part of Xinjiang.The district contains various types mineral commodities including Cu,Ni,Au,Fe,Pb and Zn(Wang et al.,2006).The Dannanhu belt in eastern part of the area is interpreted as a volcanic arc and forms an important mineralized zone bordered by the Turpan-Hami Basin to the north and Kanggur back-arc basin to the south.
基金jointly supported by China National Natural Science Foundation(Grant No.40272047)China National Key Basic Development Program(Grant No.(2002CB412609)large-scale Geological Survey Program of China Geological Survey(Project No.1212010330101).
文摘Recent examination and assessment about the porphyry copper deposits in Gangdise metallogenic belt in southern Tibet have revealed that these porphyry copper deposits are highly prospective. Several methods have been used for the isotopic dating of the Qulong, Tinggong and Chongjiang porphyry copper deposits, which gives out a petrogenetic age of 17.58±0.74Ma (single-zircon dating of SHRIMP), a metallogenetic age of 15.99±0.32Ma (Re-Os isochron dating) and an alteration age ranging between 12.00Ma and 16.5Ma (K-Ar dating). The metallogenetic age is in general agreement with the alteration age. It can be seen that the petrogenetic and metallogenetic ages for the porphyry copper deposits in Gangdise metallogenic belt are noticeably later than the age for the collisional granitic intrusion in this belt. The authors contend that the porphyry copper deposits in the study area were formed in a post-collisional extensional tectonic setting, and are closely related to the delamination of the mountain roots of the orogenic belts and the uplifting of the Qinghai-Tibet Plateau.
文摘Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibet geodepression. and nearly 500 km of the Himalayan Yarlung Zangbo plate subduction zone of nearly E-W trend. it is a relatively typical intracontinental rejuvenated platform-type porphyry copper belt. Ore-bearing porphyry masses in the belt mainly represented by monzogranite-porphyry occurring as stocks in variegated sandshale of the lower Upper Triassic Jiapila Fromation and its overlying and underlying copper-bearing strata. They are characterized by enrichment in K. CI and LREE. abundant fluid inclusions and a distinct porphyroblastic texture. The oxygen. hydrogen. strotium. lead and sulfur isotopic values of the rock show the feature of crust-mantle mixing.The Orebodies are plpe-shaped stratoid; the mineralization is dominated by Cu and Mo, accompanied by Fe. Co. Au. Ag. Bi. W. Pb. Zn. and Pt-group elements. Alteration is strong. marked mainly by potassic alteration, silicification. skarnization and propylitization. The formation of this type of deposit largely progressed through two stages. The first stage was the stage of formation of Cu-bearing source beds. It occurred in the Triassic. when a transgressive copper-bearing formation was deposited on the western margin of the Qamdo Bay. which was represented by intermediate-acid volcanic rocks and variegated sandshale in the lower part. dolomitic carbonate rocks in the middle and black carbonaceous sandshale in the upper part. In the second stage. composite porphyry copper deposits were formed. This stage took place in the Paleogene. when this district was in a stage of platform rejuvenation. forming a series of NNW-trending deep faults. so that Na, K. Cl. H2O and CO2-rich hydrothermal fluids from the depths were injected into the upper crust and replaced and melted copper-bearing sialic rocks of the upper crust. e. g. the Triassic copper-bearing rock series in the Yulong area. to form porphyroblastic cooper-bearing intermediate-acid porphyry.
基金supported by the metallogenic regularities and prediction of glutenite type Cu-Pb-Zn deposit in Tarim west margin(201511016-1)the special mapping techniques and its application demonstration in Sareke overall-exploration area in Xinjiang(12120114081501)
文摘1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of
基金funded by the National Natural Science Fund for Youth(Grant No.41302058)grant from Ministry of Science and Technology of the People’s Republic of China(Grant No.2011YQ05006908)+1 种基金Chinese Geological Survey Grants(Grant No.1212010633903,1212011220369,12120114039601,12120114019401)open funds from MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences(Grant No.ZS1103)
文摘Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.
文摘Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.
文摘The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metallogenic features and ore forming conditions, copper gold deposits in this district are ascribed to two groups: the epithermal group which can be further divided into tellurium gold type, quartz adularia type and quartz manganoansiderite type; the magmatic hydrothermal group which includes porphyry Cu Au deposit, breccia pipe porphyry type Au Cu deposit and skarn type Au Cu deposit. In this paper, characteristics of six typical shoshonite hosted Cu Au deposits are outlined. Additionally, the factors that control the metallogenesis and distribution of these Cu Au deposits are discussed preliminarily.