期刊文献+
共找到3,417篇文章
< 1 2 171 >
每页显示 20 50 100
Three-dimensional Modeling of Ore-forming Elements and Mineralization Prognosis for the Yechangping Mo Deposit,Henan Province,China
1
作者 DING Gaoming JI Genyuan +5 位作者 YAN Guolong XU Yongzhong WANG Kunming XIAO Chun WANG Quanle GUO Dongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期736-752,共17页
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di... Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration. 展开更多
关键词 3D geochemical model ore-forming elements GEOSTATISTICS deep mineralization prediction Yechangping Mo deposit
下载PDF
Chronology and Crust-Mantle Mixing of Ore-forming Porphyry of the Bangongco: Evidence from Zircon U-Pb Age and Hf Isotopes of the Naruo Porphyry Copper-Gold Deposit 被引量:14
2
作者 ZHOU Xiong FEI Guangchun +3 位作者 ZHOU Yu WEN Chunqi ZHANG Yi YUE Xiangyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期217-228,共12页
The Naruo porphyry copper-gold deposit (hereinafter referred to as the Naruo deposit) in Tibet is a potentially ultra-large, typical gold-rich porphyry copper deposit, which was recently discovered in the Bangongco-... The Naruo porphyry copper-gold deposit (hereinafter referred to as the Naruo deposit) in Tibet is a potentially ultra-large, typical gold-rich porphyry copper deposit, which was recently discovered in the Bangongco-Nujiang metallogenic belt. This study analyzed U-Ph chronology and Hf isotopes of the ore-bearing granodiorite porphyry in the Naruo deposit using the LA-ICPMS dating technique. The results show that the weighted average age is 124.03±0.94Ma (MSWD=1.7, n=20), and 2±6pb/23SU isocbron age is 126.2±2.7 Ma (MSWD=1.02, n=20), both of which are within the error. The weighted average age represents the crystallization age of the granodiorite porphyry, which indicates that the ore-bearing porphyry in the Naruo deposit area was formed in the Early Cretaceous and further implies that the Neo-tethys Ocean had not been closed before 124 Ma under a typical island-arc subduction environment. The εGr(t) of zircons from the granodiorite porphyry varies from 2.14 to 9.07, with an average of 5.18, and all zircons have εRf(t) values greater than 0; 176Hf/177Hf ratio is relatively high (0.282725-0.282986). Combined with the zircon age--Hf isotope correlation diagram, the aforementioned data indicate that the source reservoir might be a region that is mixed with depleted mantle and ancient crust, which possibly contains more materials sourced from depleted mantle. Rock-forming ages and ore-forming ages of the Duolong ore concentrate area are 120-124 Ma and 118-119 Ma, respectively, which indicate 124-118 Ma represents the main rockforming and ore-forming stage within the area. The Naruo deposit is located in the north of the Bangongco-Nujiang suture, and it yielded a zircon LA-ICPMS age of 124.03 Ma. This indicates the Bangongco-Nujiang oceanic basin subducted towards the north at about 124 Ma, and the Neo-tethys Ocean had not been closed before the middle Early Cretaceous. It is possible that the crust-mantle mixing formed the series of large and giant porphyry copper-gold deposits in the Bangongco. 展开更多
关键词 gold-rich porphyry copper deposit ore-bearing porphyry zircon LA-ICPMS dating Hfisotope Bangongco-Nujiang suture Naruo Tibet
下载PDF
Geological Characteristics and Ore-forming Time of the Dexing Porphyry Copper Ore Mine in Jiangxi Province 被引量:27
3
作者 GUO Shuo ZHAO Yuany +6 位作者 QU Huanchun WU Dexin XU Hong LI Chao LIU Yan ZHU Xiaoyun WANG Zengke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期691-699,共9页
The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, F... The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, Fujiawu and Zhushahong. Our analyses of Re in molybdenite indicate that the ore-forming material of the copper ore deposits in Dexing should be mainly mantle-derived. Our study fills in a gap in the study of formation time of the Dexing copper mine, and further proves that the copper ore deposits in the three ore districts should be formed simultaneously, about 170 Ma, belonging to the early Yanshan period, and that the formation time of the copper ore deposits should be consistent with the formation time of granodiorite porphyry in which the copper ore deposits are hosted. Promising areas for seeking porphyry copper ore deposits is predicated to be the west or southwest of Dexing. 展开更多
关键词 Re-Os isotopic dating MOLYBDENITE porphyry copper deposit
下载PDF
Discriminating characters of ore-forming intrusions in the super-large Chalukou porphyry Mo deposit,NE China 被引量:3
4
作者 Peixin Duan Cui Liu +4 位作者 Xuanxue Mo Jinfu Deng Jinhua Qin Yu Zhang Shipan Tian 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1417-1431,共15页
The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zirc... The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zircon U-Pb ages and trace elements, whole rock geochemistry and Sre Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization.Zircon U-Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the premineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of(87 Sr/86 Sr)iin the range of 0.705426 -0.707363, and ε_(Nd)(t) of -3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe_2O_3/FeO values(average 1) for the whole rock and EuN/Eu*Nvalues(average 0.45), Ce^(4+)/Ce^(3+) values(average 301)for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions(syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area. 展开更多
关键词 Greater Hinggan Range Chalukou porphyry MO DEPOSIT Geochronology ore-forming INTRUSIONS Mongolia-Okhotsk ocean
下载PDF
Characteristics and evolution of ore-forming fluids of the Chongjiang copper deposit in the Gangdise porphyry copper belt, Tibet 被引量:1
5
作者 Yuling Xie Jiuhua Xu +2 位作者 Guangming Li Zhiming Yang Longsheng Yi 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期97-102,共6页
Petrography, microthermometry, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) studies were performed on the fluid inclusions in the ore-beating quartz veins and quartz phenocrysts in the p... Petrography, microthermometry, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) studies were performed on the fluid inclusions in the ore-beating quartz veins and quartz phenocrysts in the porphyry of the Chongjiang porphyry copper deposit. The analyses of the fluid inclusions indicate that the ore-forming fluids were exsolved from magma. They are near-saturated, supercritical, rich in volatile constituents, and have the capture temperature of 362-389℃ and salinities of 17.7wt%- 18.9wt% NaC1 eq. With the decreasing of temperature and pressure, the supercritical fluids were separated into a low salinity vapor phase and a high salinity liquid phase. During quartz-sericitization, the high salinity fluid boiled and separated into a low salinity vapor phase and a high salinity liquid phase. The high salinity inclusions that formed in the boiling process had daughter mineral melting temperatures higher than the homogenization temperatures of the vapor and liquid phases. The late fluids that are responsible for argillization are of lower temperature and salinity. 展开更多
关键词 Gangdise porphyry copper belt Chongjiang copper deposit fluid inclusions ore-forming fluids
下载PDF
Unveil the Redox Evolution of Ore-forming Fluids using Sulfur Isotope:A Case Study of the Zhengguang Intermediate Sulfidation Epithermal Au-Zn Deposit,NE China
6
作者 WANG Le GAO Shen +6 位作者 QIN Kezhang SONG Guoxue HAN Ri SU Shiqiang GUO Jihai PANG Xuyong LI Guangming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第5期1462-1474,共13页
Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate s... Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits. 展开更多
关键词 intermediate sulfidation EPITHERMAL sulfur isotope ore-forming fluids oxygen fugacity Zhengguang
下载PDF
Metallogenic Age and Ore-forming Material Sources of the Dahongshan Fe-Cu Deposit,Yunnan Province:Insights from Molybdenite Re-Os Dating and H-O-S-Pb Isotopes
7
作者 YE Zifeng YANG Guangshu +2 位作者 YU Wenxiu CHEN Aibing JIA Fuju 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1698-1718,共21页
The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization ... The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism. 展开更多
关键词 stable isotopes Re-Os dating ore-forming material Dahongshan Fe-Cu deposit Kangdian region
下载PDF
Mineral Geochemistry of Apatite in the Jiama PorphyrySkarn Deposit,Tibet and its Geological Significance
8
作者 YANG Yang TANG Juxing +8 位作者 ZHANG Zebin TANG Pan XIE Fuwei RAN Fengqin YANG Zongyao YANG Huaichao BAI Yun SUN Miao QI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期399-415,共17页
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi... The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit. 展开更多
关键词 APATITE METALLOGENESIS mineral geochemistry porphyry JIAMA TIBET
下载PDF
Source of the Ore-forming Adakitic Porphyry at the Beiya Super-large Au Deposit, Western Yangtze Craton: New Evidence from Zircon U-Pb Ages of the Amphibolite Xenoliths
9
作者 LIU Siqi ZHENG Yuanchuan +3 位作者 SHEN Yang HOU Zengqian WANG Lu WANG Zixuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第1期208-209,共2页
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha... Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source. 展开更多
关键词 Western Yangtze Craton New Evidence from Zircon U-Pb Ages of the AMPHIBOLITE XENOLITHS Source of the ore-forming Adakitic porphyry at the Beiya SUPER-LARGE Au DEPOSIT
下载PDF
Reduced magma generation and its implications for the Pulang giant porphyry Cu-polymetallic deposit in Northwest Yunnan,China
10
作者 Jingwei Guan Tao Ren +3 位作者 Lei Wang Shenjin Guan Lianrong Wu Baosheng Shi 《Acta Geochimica》 EI CAS CSCD 2024年第4期802-813,共12页
The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab b... The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab beneath the Zhongza massif.Chalcopyrite-pyrrhotite-pyritemolybdenite occurs as disseminations,veins,veinlets,and stockworks distributed in the K-silicate alteration zone in the monzonite porphyry,which is superimposed by propylitization.The chemical compositions of biotite and amphibole analyzed by electron probe microanalysis(EPMA)indicate that the ore-forming magma and exsolved fluids experienced a continuous decrease in the oxygen fugacity(fO_(2)).Primary amphibolite and biotite(type I)crystallized at relatively high temperatures(744-827°C)and low fO_(2)(log fO_(2)=−12.26 to−11.91)during the magmatic stage.Hydrothermal fluids exsolved from the magma have a relatively lower temperature(621-711°C)and fO_(2)(log fO_(2)=−14.36 to−13.32)than the original magma.In addition,the presence of a high abundance of pyrrhotite and an insufficiency of primary magnetite and sulfate in the ore(i.e.,anhydrite and gypsum)indicate that the deposit may be a reduced porphyry deposit.Magma and fluid fO_(2)results,combined with previous research on magmatic fO_(2)at the Pulang deposit,indicate that the magma associated with the reduced Pulang ore assemblages was initially generated as a highly oxidized magma that was subsequently reduced by sedimentary rocks of the Tumugou Formation. 展开更多
关键词 porphyry deposit Oxygen fugacity(fO_(2)) Contamination of surrounding rock Pulang Zhongdian arc
下载PDF
Fluid inclusion and H-O isotope study of the Jiguanshan porphyry Mo deposit,Xilamulun Metallogenic Belt:implications for characteristics and evolution of ore-forming fluids
11
作者 Changhong Wang Keyong Wang +3 位作者 Wenyan Cai Jian Li Hanlun Liu Yicun Wang 《Acta Geochimica》 EI CAS CSCD 2020年第4期497-511,共15页
We studied the fluid inclusions of the Jiguanshan Mo deposit in China,which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt.The irregular Mo ore body with various types of hydrothermal ... We studied the fluid inclusions of the Jiguanshan Mo deposit in China,which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt.The irregular Mo ore body with various types of hydrothermal veinlets is hosted by Late Jurassic granite porphyry.Intense hydrothermal alterations in the deposit from the core to margin are silicification-potassium feldspar alteration,pyrite-quartz-sericite-fluorite alteration,and propylitic alteration.Based on the mineral assemblages and crosscutting relationships of ore veins,the ore-forming process were divided into three stages and two substages:quartz-pyrite veins(stage I)associated with potassic alteration;quartz-molybdenite-chalcopyrite-pyrite veins(substage Ⅱ-1)and quartz-molybdenite-fluorite veins(substage Ⅱ-2)associated with phyllic alteration;and fluorite-quartz-carbonate veins(stage Ⅲ)with carbonation.Five majorfluid inclusions(FIs)types were distinguished in the quartz associated with oxide and sulfide minerals,i.e.polyphase brine(Pb-type),opaque-bearing brine(Ob-type),solid halite(S-type),two-phase aqueous(A-type),and vapor(Vtype)inclusions.The FIs of stage I were composed of liquid-rich S-,A-,and V-type FIs with homogenization temperatures and salinities of 490 to 511℃ and 8.9 to 56.0 wt%NaCl equiv.,respectively.The FIs of substage Ⅱ-1 are composed of Pb-,Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 352 to 460℃ and 3.7 to 46.1 wt%NaCl equiv,respectively.The FIs of substage Ⅱ-2 are Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 234 to309°C and 3.7 to 39.2 wt%NaCl equiv,respectively.The FIs of stage Ⅲ are A-type FIs with homogenization temperatures and salinities of 136 to 172℃ and 1.1 to 8.9 wt%NaCl equiv,respectively.Fluid boiling,which resulted in the precipitation of sulfides,occurred in stages I andⅡ.The initial ore-forming fluids of the Jiguanshan deposit had high temperature,high salinity,and belonged to an F-rich NaCl±KCl-H2O system.The fluids gradually evolved to low temperature,low salinity,and belonged to a NaCl-H2O system.Studies of the hydrogen and oxygen isotope compositions of quartz(δ^18OH2O=-7.3 to 6.3%,δDH2O=-104.3 to-83.3%)show that the ore-formingfluids gradually evolved from magmatic water to meteoric water. 展开更多
关键词 Fluid inclusions Fluid inclusion assemblages H-O isotope Xilamulun Metallogenic Belt porphyry Mo deposit
下载PDF
Origin of Illites at Dexing Porphyry Copper Deposit, Jiangxi Province, East China: Implications for Alteration Zoning and Ore-Forming Fluid Evolution
12
作者 金章东 朱金初 +2 位作者 季峻峰 卢新卫 李福春 《Chinese Journal Of Geochemistry》 EI CAS 2001年第2期167-176,共10页
According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite ... According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite\|porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low\|grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M\-1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody (>2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time. 展开更多
关键词 伊利石 XRD分析 热液 成矿流体 斑岩型铜矿床 江西
下载PDF
In, Sn, Pb and Zn Contents and Their Relationships in Ore-forming Fluids from Some In-rich and In-poor Deposits in China 被引量:15
13
作者 ZHANG Qian ZHU Xiaoqing +1 位作者 HE Yuliang ZHU Zhaohui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期450-462,共13页
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn... All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium. 展开更多
关键词 In-rich deposit In-poor deposit ore-forming fluid fluid inclusion ore-forming elements
下载PDF
Rare Earth Elements Geochemistry of Laowan Gold Deposit in Henan Province: Trace to Source of Ore-Forming Materials 被引量:12
14
作者 谢巧勤 徐晓春 +2 位作者 李晓萱 陈天虎 陆三明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第1期115-120,共6页
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC... The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly. 展开更多
关键词 Laowan gold deposit REE geochemistry source of the ore-forming material ore-forming fluid rare earths
下载PDF
Late Mesozoic Ore-forming Events in the Ningwu Ore District, Middle-Lower Yangtze River Polymetallic Ore Belt, East China: Evidence from Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Granodioritic Stocks 被引量:12
15
作者 DUAN Chao LI Yanhe +3 位作者 HOU Kejun YUAN Shunda LIU Jialin ZHANG Cheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期719-736,共18页
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall... Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area. 展开更多
关键词 Zircon U-Pb age Hf isotope porphyry iron deposit Ningwu ore district Middle–Lower Yangtze River polymetallic ore belt
下载PDF
REE Geochemistry of Sulfides from the Huize Zn-Pb Ore Field, Yunnan Province: Implication for the Sources of Ore-forming Metals 被引量:15
16
作者 LI Wenbo HUANG Zhilong QI Liang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期442-449,共8页
REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with ... REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata. 展开更多
关键词 Huize Zn-Pb ore field REE geochemistry SULFIDE fluid ore-forming metal
下载PDF
Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems 被引量:8
17
作者 邓军 方云 +3 位作者 杨立强 杨军臣 孙忠实 王建平 丁式江 王庆飞 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期220-332,共13页
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma... Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone. 展开更多
关键词 fluid system fractal dispersion point-source illuviation model ore-forming dynamics numerical simulation
下载PDF
Geochemical Characteristics and Sources of Ore-forming Fluids of the Mayuan Pb-Zn Deposit,Nanzheng,Shaanxi,China 被引量:5
18
作者 LIU Shuwen LI Ronxi +3 位作者 CHI Guoxiang ZENG Rong LIU Lingfang SHI Shun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期783-793,共11页
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated do... The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit. 展开更多
关键词 fluid inclusion ore-forming fluids organic matter Mayuan Pb-Zn deposit SHAANXI
下载PDF
REE Geochemistry of Fluorite from the Maoniuping REE Deposit,Sichuan Province,China:Implications for the Source of Ore-forming Fluids 被引量:3
19
作者 HUANG Zhilong XU Cheng +6 位作者 Andrew McCAIG LIU Congqiang WU Jing XU Deru LI Wenbo GUAN Tao XIAO Huayun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期622-636,共15页
Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based... Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts. 展开更多
关键词 FLUORITE REE geochemistry ore-forming fluid Maoniuping REE deposit
下载PDF
Ore-forming Fluid Systems and Mineralization in the Eastern Jiangnan Uplift in the Border Area of Anhui and Jiangxi Provinces, China 被引量:3
20
作者 ZHOUTaofa YUANFeng +4 位作者 HOUMingjin FAnYu DUJianguo ZHUGuang YUEShucang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期380-386,共7页
Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional met... Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional metallogeny is discussed, and the ore-forming fluid systems are classified in this article. It is proposed that the fluid ore-forming activities in the Jiangnan Uplift both in northern Jiangxi and southern Anhui have close relationships with the crust-mantle interaction and magmatic-tectonic activities. The types and scales of the mineralization on the both sides of the eastern Jiangnan Uplift were determined by fluid ore-forming systems and geological backgrounds. 展开更多
关键词 ore-forming fluid systems MINERALIZATION Jiangnan Uplift ANHUI northern Jiangxi
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部