Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or ...Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or concealed structural planes obviously have the coupling relationship with the convergent area of mineral deposits. The geochemical steep-dipping zone is usually distributed along the boundary of ancient continental blocks. Its crossing effect with geophysical gradient zone is usually presented as depression or swell of Moho discontinuity on the crossing direction with the ancient continental margin, which would lead to form deep fractures of earth crust at block margins or lead to adjustment of earth crust texture. The deep hydrothermal liquid would rise up along the structural planes to form the convergent areas of mineral deposits. For example, Luonan- Luanchuan area in east Qinling is a typical crossed area of the geochemical steepdipping zone and geophysical gradient zone. The mineral deposit belt extends along EW direction. It was controlled by the geochemical steepdipping zone equidistantly distributed along NE direction like a string of beads controlled by a gravity gradient zone in NE direction and a mantle depression slope. Along a plunging mantle syncline on EW plunging direction, from the east to the west, checkform was distributed which controls synergic crustmantle granoporphyry rocks. Therefore, a convergent mineralization area of Mo, W, Zn and Au giant deposits occurred.展开更多
The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group el...The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group elements(PGE) ranging from 380 to 577 ppb, and low Pd/Ir ratios(<0.1). In mid-ocean ridge basalts(MORB)-normalized spidergrams, chromites of the Cuobuzha chromitites are depleted in Al, Ga, V, Mg and Zn, and enriched in Mn and Cr, sharing similar patterns with those of ophiolitic boninites in the Bonin and Thetford Mines. Approximately 20 platinum group mineral(PGM) grains were discovered from the samples, including laurite, erlichmanite, Os-Fe alloy, cuproiridsite, and irarsite. The PGM assemblages indicate that sulfur fugacity was initially low enough to allow the precipitation of Os-Fe alloy and increased thereafter, with the fall in temperature. Primary Fe-Ni and Fe-Cr alloys, which are stable in a highly reduced environment, occur as inclusions within chromites or clinopyroxenes. Calculated results show that the parental magma has an intimate affinity with boninites. Based on our observations, a model is proposed wherein the Cuobuzha chromitites contain high-pressure and low-pressure chromites. Low-pressure chromites were formed via reaction between boninitic melts and peridotites, during which the high-pressure chromites hosting highly reduced minerals were mobilized by melts and were reallocated to podiform chromitites.展开更多
In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main ...In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.展开更多
A mineral resource zone,rich in resources and energy,is intensively developed and disturbed by human activities,which causes an obvious change of landscapes.Taking Wu’an of Hebei Province,China,as a case study,this p...A mineral resource zone,rich in resources and energy,is intensively developed and disturbed by human activities,which causes an obvious change of landscapes.Taking Wu’an of Hebei Province,China,as a case study,this paper extracts landscape information of mineral resource zones through overlapping mineral resources distribution map and landscape pattern map.And then,various landscape indices are selected for analyzing the effects of grain size(30,60,90,120,150,180,210,240,270 and 300 m)on landscape patterns.Due to different kinds of landscape information transmitted by indices,the changing trends vary with the increase of grain sizes.Accordingly the landscape indices are classified into three types of effects:disturbance,continuity and sustainability,and each type of effect has its own optimal range for grain sizes.Then the optimal range of grain size on landscape patterns in mineral resource zones is gained through a comparison of the effects in various grain sizes of landscape indices.The best first domain of scale covers 30-90 m,with a suitable grain size of 30-60 m before intensive mining and a suitable grain size of 60-90 m after intensive mining.Besides,the suitable grain sizes for reflecting disturbance,continuity and sustainability before intensive mining are 30-60,30-60 and 30-90 m,respectively,however,the sizes are changed to 60-90,60-90 and 30-90 m,respectively,after intensive mining.The results are helpful for rational land use and optimal landscape allocation.展开更多
Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional litholo...Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional lithology, tectonic fabric and also the geomorphic details of a terrain which aid precisely in targeting of metals and minerals. Mapping of mineralized zones can be done using Geospatial Technology in a GIS platform. The present study includes creation of various maps like lithological map, geomorphological map, contours and slope map using satellite data like IRS LISSIV and ASTER DEM which can be used to interprete and correlate the various mineral prospective zones in the study area. Even the alterations of the prevalent mineral zones can be mapped for further utilization strategies. The present work is based on the investigations being carried under ISROSAC Respond Project (Dept. of Space, Govt. of India SAC Code: OGP62, ISRO Code: 10/4/556).展开更多
Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guan...Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guangdong province for example, is a kind of mylonite type gold deposit in a ductile shear zone, and the gold ore has the forms of layer and vein; the Erjia gold deposit formed in a brittleuductile shear zone, and the gold ore, being of two types, mylonite type and cataclasticaltered rock type, has the form of vein; the Shangguan gold deposit, Henan Province, was located in a ductile-brittle shear zone, and the gold ore is of two types, cataclastic-altered rock type and quartz vein type; and the Linglong gold deposit occurs in a brittle shear zone, with the main gold ore of quartz vein type having the forms of vein and lens. Simulating experiments on tectono-controlled formation of gold ores gave us the idea that not only the samples underwent crack deformation, but also changes occurred in chemical composition of minerals, and also caused gold to be remobilized and finally filled into the newlyuproduced fissures.展开更多
Altai mineralization zone is located in the north-west of Xinjiang Uigur Autonomous Region.Throughout the zone 70 and more mineral species have been discovered.There are 46 mineral spe-cies reserve of which hag been v...Altai mineralization zone is located in the north-west of Xinjiang Uigur Autonomous Region.Throughout the zone 70 and more mineral species have been discovered.There are 46 mineral spe-cies reserve of which hag been verified.Altai is an importantest place of occurrence of beryllium,lithium,tantalum,niobium and other rare metals.It is also a producing area of high-qualitymuscovite,biotite and other mica.The precious stone,lade and marble are also produced there.展开更多
Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate m...Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks.展开更多
Two types of gold ores,siliceous mylonite and quartz vein,formed at the first and second stages of mineralization respectively, can be clearly recognized in the shear zone-hosted gold deposit at Jinshan, Jiangxi.Simil...Two types of gold ores,siliceous mylonite and quartz vein,formed at the first and second stages of mineralization respectively, can be clearly recognized in the shear zone-hosted gold deposit at Jinshan, Jiangxi.Similarity in REE and trace elements between the siliceous mylonite and the country rocks indicates that the ore metals were supplied by the surrounding strata during the first stage of mineralization.On the other hand, as indicated by fluid inclusion data,the ore-forming fluid at the second stage was of meteoric origin and the precipitation of gold was caused by phase separation.展开更多
The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines fro...The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines from the deposits. The results indicate a systematic change of mineral geochemical compositions, which might be used as a mineral geochemical tracer for post-magmatic hydrothermal fluid, basin fluid and their mixture. The tourmalines from granite are schori with Fe/ (Fe+Mg) ratios of 0.912-1.00 and Na/(Na+Ca) ratios of 0.892-0.981. Tourmalines as an inclusion in quartz from the ore bodies are dravite with Fe/(Fe+Mg) ratios of 0.212-0.519 and Na/(Na+Ca) ratios of 0.786--0.997. Tourmalines from the country rocks are dravite with Fe/(Fe+Mg) ratios of 0.313--0.337 and Na/(Na+Ca) ratio of 0.599-0.723. Tourmalines from cassiterite-tourmaline veins that occur in crannies within the country rocks show distinct optical zoning with alternate occurrence of dravite and schorl, Fe/(Fe+Mg)=0.374-0.843, Na/(Na+Ca)=0.538-0.987. It suggests that schorl in granite and dravite in carbonatite are related to magmatic fluid and basin fluid respectively. When magmatic fluid rose up and entered into crannies of the country rocks, consisting mainly of carbonatite, basin fluid would be constantly added to the magmatic fluid. The two types of fluid were mixed in structural crannies of the sedimentary basin accompanied with periodic geochemical oscillations to form material records in chemical composition zonings of tourmalines.展开更多
The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled...The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.展开更多
The shapes of intrusive body and contact zone might influence the formation and distribution of orebodies in skarn deposit.By taking Xinwuli intrusive body in Fenghuangshan copper deposit,Tongling,Anhui,China,as the r...The shapes of intrusive body and contact zone might influence the formation and distribution of orebodies in skarn deposit.By taking Xinwuli intrusive body in Fenghuangshan copper deposit,Tongling,Anhui,China,as the research object,a new method was used to obtain the quantitative relationship between intrusion morphology and skarn mineralization.The first step of the method was to extract morphological characteristic parameters based on mathematical morphology and Euclidean distance transformation;then the quantitative relationship between the parameters and orebodies was analyzed;finally correlational analyses between the parameters and mineralization indices were conducted.The results show that morphological characteristic parameters can effectively indicate the location of concealed ore bodies in skarn deposit,with the following parts as advantageous positions of skarn mineralization:(1)the parts away from the1st trend surface in the range from?25to50m;(2)the convex parts about200m away from the2nd trend surface,around which the tangent plane of the intrusive body is approximately consistent with the trend surface;(3)the contact zones with angle between intrusive body original contact surface and trend contact surface ranging from35°to70°;(4)the parts with angle between intrusive body original contact surface and regional extruding far crustal stress ranging from50°to60°.These knowledge can be applied to more skarn deposits for future mineral exploration.展开更多
The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zon...The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.展开更多
A geophysical survey was conducted in the Kelle-Bidjocka village, Messondo subdivision, in the Centre Region, Cameroon. The data acquisition was made by combining Schlumberger profiling and electrical soundings along ...A geophysical survey was conducted in the Kelle-Bidjocka village, Messondo subdivision, in the Centre Region, Cameroon. The data acquisition was made by combining Schlumberger profiling and electrical soundings along six (06) profiles of 1500 m in length for a total of 64 geoelectrical stations’ survey conducted through a variable mesh 100 m × 200 m, or 100 m × 300 m. The equipment used is the DC resistivimeter Syscal Junior 48 (Iris Instrument). Processing and modelling of field data are made by using the Res2Dinv, Qwseln and Surfer software. The investigation methods used are electrical resistivity (DC) and induced polarization (IP) methods. The analyses and interpretations have helped to highlight areas of weakness or conductive discontinuities (fractures, faults, shear zones, etc.) in Precambrian gneiss formations, sometimes undergoing weathering processes. They identify the weathering or mineralogical accumulation horizons, the most promising is a mineralization channel identified in the NE-SW direction. The highlighted mineralization is characterized by strong gradients of chargeability or polarization. Samples and other geological evidences observed in the area are used to associate the most polarizable structures with ferriferous formations. Weakly polarizable and particularly conductive backgrounds identified by the inverse pseudo-sections are thought to be sulphate minerals or groundwater targets for future hydrogeological studies.展开更多
The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift...The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.展开更多
The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×...The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.展开更多
For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of w...For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.展开更多
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ...Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.展开更多
基金Fund of the National Climbing Project!( 95-pre-2 5 -03 ) the Ministry of Geology and Mineral ResourcesStudying Projec
文摘Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or concealed structural planes obviously have the coupling relationship with the convergent area of mineral deposits. The geochemical steep-dipping zone is usually distributed along the boundary of ancient continental blocks. Its crossing effect with geophysical gradient zone is usually presented as depression or swell of Moho discontinuity on the crossing direction with the ancient continental margin, which would lead to form deep fractures of earth crust at block margins or lead to adjustment of earth crust texture. The deep hydrothermal liquid would rise up along the structural planes to form the convergent areas of mineral deposits. For example, Luonan- Luanchuan area in east Qinling is a typical crossed area of the geochemical steepdipping zone and geophysical gradient zone. The mineral deposit belt extends along EW direction. It was controlled by the geochemical steepdipping zone equidistantly distributed along NE direction like a string of beads controlled by a gravity gradient zone in NE direction and a mantle depression slope. Along a plunging mantle syncline on EW plunging direction, from the east to the west, checkform was distributed which controls synergic crustmantle granoporphyry rocks. Therefore, a convergent mineralization area of Mo, W, Zn and Au giant deposits occurred.
基金funded by grants from the Ministry of Science and Technology of China (2014DFR21270)from the China Geological Survey (DD20160023-01 and DD20160022-01)+1 种基金from the National Natural Science Foundation of China (41802034)from the National Science Foundation of China (41720104009, 41672063, 41773029).
文摘The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group elements(PGE) ranging from 380 to 577 ppb, and low Pd/Ir ratios(<0.1). In mid-ocean ridge basalts(MORB)-normalized spidergrams, chromites of the Cuobuzha chromitites are depleted in Al, Ga, V, Mg and Zn, and enriched in Mn and Cr, sharing similar patterns with those of ophiolitic boninites in the Bonin and Thetford Mines. Approximately 20 platinum group mineral(PGM) grains were discovered from the samples, including laurite, erlichmanite, Os-Fe alloy, cuproiridsite, and irarsite. The PGM assemblages indicate that sulfur fugacity was initially low enough to allow the precipitation of Os-Fe alloy and increased thereafter, with the fall in temperature. Primary Fe-Ni and Fe-Cr alloys, which are stable in a highly reduced environment, occur as inclusions within chromites or clinopyroxenes. Calculated results show that the parental magma has an intimate affinity with boninites. Based on our observations, a model is proposed wherein the Cuobuzha chromitites contain high-pressure and low-pressure chromites. Low-pressure chromites were formed via reaction between boninitic melts and peridotites, during which the high-pressure chromites hosting highly reduced minerals were mobilized by melts and were reallocated to podiform chromitites.
文摘In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.
基金supported by National Natural Science Foundation of China(Grant No.41101531)Doctoral Fund of Ministry of Education of China(New Teacher Fund)(Grant No.20110022120010)Beijing Higher Education Young Elite Teacher Project(No.YETP0639).
文摘A mineral resource zone,rich in resources and energy,is intensively developed and disturbed by human activities,which causes an obvious change of landscapes.Taking Wu’an of Hebei Province,China,as a case study,this paper extracts landscape information of mineral resource zones through overlapping mineral resources distribution map and landscape pattern map.And then,various landscape indices are selected for analyzing the effects of grain size(30,60,90,120,150,180,210,240,270 and 300 m)on landscape patterns.Due to different kinds of landscape information transmitted by indices,the changing trends vary with the increase of grain sizes.Accordingly the landscape indices are classified into three types of effects:disturbance,continuity and sustainability,and each type of effect has its own optimal range for grain sizes.Then the optimal range of grain size on landscape patterns in mineral resource zones is gained through a comparison of the effects in various grain sizes of landscape indices.The best first domain of scale covers 30-90 m,with a suitable grain size of 30-60 m before intensive mining and a suitable grain size of 60-90 m after intensive mining.Besides,the suitable grain sizes for reflecting disturbance,continuity and sustainability before intensive mining are 30-60,30-60 and 30-90 m,respectively,however,the sizes are changed to 60-90,60-90 and 30-90 m,respectively,after intensive mining.The results are helpful for rational land use and optimal landscape allocation.
文摘Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional lithology, tectonic fabric and also the geomorphic details of a terrain which aid precisely in targeting of metals and minerals. Mapping of mineralized zones can be done using Geospatial Technology in a GIS platform. The present study includes creation of various maps like lithological map, geomorphological map, contours and slope map using satellite data like IRS LISSIV and ASTER DEM which can be used to interprete and correlate the various mineral prospective zones in the study area. Even the alterations of the prevalent mineral zones can be mapped for further utilization strategies. The present work is based on the investigations being carried under ISROSAC Respond Project (Dept. of Space, Govt. of India SAC Code: OGP62, ISRO Code: 10/4/556).
文摘Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guangdong province for example, is a kind of mylonite type gold deposit in a ductile shear zone, and the gold ore has the forms of layer and vein; the Erjia gold deposit formed in a brittleuductile shear zone, and the gold ore, being of two types, mylonite type and cataclasticaltered rock type, has the form of vein; the Shangguan gold deposit, Henan Province, was located in a ductile-brittle shear zone, and the gold ore is of two types, cataclastic-altered rock type and quartz vein type; and the Linglong gold deposit occurs in a brittle shear zone, with the main gold ore of quartz vein type having the forms of vein and lens. Simulating experiments on tectono-controlled formation of gold ores gave us the idea that not only the samples underwent crack deformation, but also changes occurred in chemical composition of minerals, and also caused gold to be remobilized and finally filled into the newlyuproduced fissures.
文摘Altai mineralization zone is located in the north-west of Xinjiang Uigur Autonomous Region.Throughout the zone 70 and more mineral species have been discovered.There are 46 mineral spe-cies reserve of which hag been verified.Altai is an importantest place of occurrence of beryllium,lithium,tantalum,niobium and other rare metals.It is also a producing area of high-qualitymuscovite,biotite and other mica.The precious stone,lade and marble are also produced there.
文摘Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks.
文摘Two types of gold ores,siliceous mylonite and quartz vein,formed at the first and second stages of mineralization respectively, can be clearly recognized in the shear zone-hosted gold deposit at Jinshan, Jiangxi.Similarity in REE and trace elements between the siliceous mylonite and the country rocks indicates that the ore metals were supplied by the surrounding strata during the first stage of mineralization.On the other hand, as indicated by fluid inclusion data,the ore-forming fluid at the second stage was of meteoric origin and the precipitation of gold was caused by phase separation.
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
基金supported by "Technology of Comprehensive Prospecting and Exploitability for Elements in Crisis Mines" (Grant No. 2008EG115074)a special fund managed by the Ministry of Science and Technology for technical R&D of scientific research institutions, and the Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences
文摘The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines from the deposits. The results indicate a systematic change of mineral geochemical compositions, which might be used as a mineral geochemical tracer for post-magmatic hydrothermal fluid, basin fluid and their mixture. The tourmalines from granite are schori with Fe/ (Fe+Mg) ratios of 0.912-1.00 and Na/(Na+Ca) ratios of 0.892-0.981. Tourmalines as an inclusion in quartz from the ore bodies are dravite with Fe/(Fe+Mg) ratios of 0.212-0.519 and Na/(Na+Ca) ratios of 0.786--0.997. Tourmalines from the country rocks are dravite with Fe/(Fe+Mg) ratios of 0.313--0.337 and Na/(Na+Ca) ratio of 0.599-0.723. Tourmalines from cassiterite-tourmaline veins that occur in crannies within the country rocks show distinct optical zoning with alternate occurrence of dravite and schorl, Fe/(Fe+Mg)=0.374-0.843, Na/(Na+Ca)=0.538-0.987. It suggests that schorl in granite and dravite in carbonatite are related to magmatic fluid and basin fluid respectively. When magmatic fluid rose up and entered into crannies of the country rocks, consisting mainly of carbonatite, basin fluid would be constantly added to the magmatic fluid. The two types of fluid were mixed in structural crannies of the sedimentary basin accompanied with periodic geochemical oscillations to form material records in chemical composition zonings of tourmalines.
基金provided by the National Key Research and Development Program of China "Deep Structure and Ore-forming Process of Main Mineralization System in Tibetan Orogen"(2016YFC0600300)the National Basic Research Program of China (2011CB403104)+1 种基金the China Geological Survey (12120113037901)the National Natural Science Foundation of China(41320104004) and(41503040)
文摘The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.
基金Projects(41472301,41472302) supported by the National Natural Science Foundation of China
文摘The shapes of intrusive body and contact zone might influence the formation and distribution of orebodies in skarn deposit.By taking Xinwuli intrusive body in Fenghuangshan copper deposit,Tongling,Anhui,China,as the research object,a new method was used to obtain the quantitative relationship between intrusion morphology and skarn mineralization.The first step of the method was to extract morphological characteristic parameters based on mathematical morphology and Euclidean distance transformation;then the quantitative relationship between the parameters and orebodies was analyzed;finally correlational analyses between the parameters and mineralization indices were conducted.The results show that morphological characteristic parameters can effectively indicate the location of concealed ore bodies in skarn deposit,with the following parts as advantageous positions of skarn mineralization:(1)the parts away from the1st trend surface in the range from?25to50m;(2)the convex parts about200m away from the2nd trend surface,around which the tangent plane of the intrusive body is approximately consistent with the trend surface;(3)the contact zones with angle between intrusive body original contact surface and trend contact surface ranging from35°to70°;(4)the parts with angle between intrusive body original contact surface and regional extruding far crustal stress ranging from50°to60°.These knowledge can be applied to more skarn deposits for future mineral exploration.
基金supported by a key project of resources and environment of the Chinese Academy of Sciences(No:KZ951-B1-404)the Project 211 of the China University of Geosciences
文摘The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.
文摘A geophysical survey was conducted in the Kelle-Bidjocka village, Messondo subdivision, in the Centre Region, Cameroon. The data acquisition was made by combining Schlumberger profiling and electrical soundings along six (06) profiles of 1500 m in length for a total of 64 geoelectrical stations’ survey conducted through a variable mesh 100 m × 200 m, or 100 m × 300 m. The equipment used is the DC resistivimeter Syscal Junior 48 (Iris Instrument). Processing and modelling of field data are made by using the Res2Dinv, Qwseln and Surfer software. The investigation methods used are electrical resistivity (DC) and induced polarization (IP) methods. The analyses and interpretations have helped to highlight areas of weakness or conductive discontinuities (fractures, faults, shear zones, etc.) in Precambrian gneiss formations, sometimes undergoing weathering processes. They identify the weathering or mineralogical accumulation horizons, the most promising is a mineralization channel identified in the NE-SW direction. The highlighted mineralization is characterized by strong gradients of chargeability or polarization. Samples and other geological evidences observed in the area are used to associate the most polarizable structures with ferriferous formations. Weakly polarizable and particularly conductive backgrounds identified by the inverse pseudo-sections are thought to be sulphate minerals or groundwater targets for future hydrogeological studies.
基金supported by the National Key Research and Development Program of China(2017YFC0602206)the projects of the China Geological Survey(DD20160066,DD20190551).
文摘The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.
基金supported financially by the National Natural Science Foundation of China(No.41772069)projects of the China Geological Survey(1212011220737,121201004000150015,DD20190570).
文摘The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.
文摘For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.
基金by the National Natural Science Foundation of China(41772076,41672084,41372086,41503038)the National Key Research and Development Program of China(2016YFC0600105-04,2016YFC0600606)+1 种基金the Key Research and Development Program of Shandong Province(2017CXGC1601,2017CXGC1602,2017CXGC1603),the Special Fund for“Taishan Scholars”Project of Shandong Province.
文摘Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.