As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In th...As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In the present study, the hydrogen engine efficiency and the load control are the two main parameters that will be improved by using the combined operation of in-cylinder direct fuel injection (DI) and port fuel injection (PFI) strategies to obtain maximum engine power outputs with acceptable efficiency equivalent to gasoline engines. Wide open throttle (WOT) operation has been used to take advantage of the associated increase in engine efficiency, in which the loads have been regulated with mixture richness (qualitative control) instead of volumetric efficiency (quantitative control). The capabilities of a 3D-CFD code have been developed and employed to simulate the whole engine physicochemical process which includes the hydrogen injection through the intake manifold (PFI) and/or the hydrogen DI in the engine compression stroke. Conditions with simulated PFI, PFI + DI and DI have been analyzed to study the effects of mixture preparation behaviors on the hydrogen ignition and its flame propagation inside the engine combustion chamber. Numerically, the CFD code has been intensively validated against experimental engine data which provided remarkable agreement in terms of in-cylinder pressure history evaluation.展开更多
One of the proposed concepts for spark ignition engines is advanced port fuel injection(APFI),which suggests using two port injectors for each cylinder.In this research,we numerically examine the capabilities of this ...One of the proposed concepts for spark ignition engines is advanced port fuel injection(APFI),which suggests using two port injectors for each cylinder.In this research,we numerically examine the capabilities of this concept in reducing fuel consumption and increasing engine performance.The results demonstrated that the use of this concept is very effective due to the use of two injectors and the possibility of reducing the spraying time and bringing the injection start time closer to the air inlet valve opening time.The maximum amount of fuel film formed on the walls is reduced by about 75%,naturally,which leads to better and more homogeneous fuel distribution inside the combustion chamber and increases combustion efficiency.The results showed that under the same boundary conditions and engine operating point,the use of two port injectors for each cylinder leads to an increase of more than 20%of the maximum combustion chamber pressure and about 4%combustion efficiency.On the other hand,fuel film formation becomes worse in cold conditions.So in this study,the capabilities of this concept in cold conditions were investigated too.Investigations have shown that the advanced port fuel injection,unlike conventional engines,is almost insensitive to inlet temperature changes.展开更多
文摘As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In the present study, the hydrogen engine efficiency and the load control are the two main parameters that will be improved by using the combined operation of in-cylinder direct fuel injection (DI) and port fuel injection (PFI) strategies to obtain maximum engine power outputs with acceptable efficiency equivalent to gasoline engines. Wide open throttle (WOT) operation has been used to take advantage of the associated increase in engine efficiency, in which the loads have been regulated with mixture richness (qualitative control) instead of volumetric efficiency (quantitative control). The capabilities of a 3D-CFD code have been developed and employed to simulate the whole engine physicochemical process which includes the hydrogen injection through the intake manifold (PFI) and/or the hydrogen DI in the engine compression stroke. Conditions with simulated PFI, PFI + DI and DI have been analyzed to study the effects of mixture preparation behaviors on the hydrogen ignition and its flame propagation inside the engine combustion chamber. Numerically, the CFD code has been intensively validated against experimental engine data which provided remarkable agreement in terms of in-cylinder pressure history evaluation.
文摘One of the proposed concepts for spark ignition engines is advanced port fuel injection(APFI),which suggests using two port injectors for each cylinder.In this research,we numerically examine the capabilities of this concept in reducing fuel consumption and increasing engine performance.The results demonstrated that the use of this concept is very effective due to the use of two injectors and the possibility of reducing the spraying time and bringing the injection start time closer to the air inlet valve opening time.The maximum amount of fuel film formed on the walls is reduced by about 75%,naturally,which leads to better and more homogeneous fuel distribution inside the combustion chamber and increases combustion efficiency.The results showed that under the same boundary conditions and engine operating point,the use of two port injectors for each cylinder leads to an increase of more than 20%of the maximum combustion chamber pressure and about 4%combustion efficiency.On the other hand,fuel film formation becomes worse in cold conditions.So in this study,the capabilities of this concept in cold conditions were investigated too.Investigations have shown that the advanced port fuel injection,unlike conventional engines,is almost insensitive to inlet temperature changes.