期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance
1
作者 M.Jayasree K.A.Sunitha +3 位作者 A.Brindha Punna Rajasekhar G.Aravamuthan G.Joselin Retnakumar 《Intelligent Automation & Soft Computing》 2024年第4期745-764,共20页
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d... Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses. 展开更多
关键词 Face recognition pose variations transfer learning method yaw poses FaceNet Inception-v2
下载PDF
Secure Rotation Invariant Face Detection System for Authentication
2
作者 Amit Verma Mohammed Baljon +4 位作者 Shailendra Mishra Iqbaldeep Kaur Ritika Saini Sharad Saxena Sanjay Kumar Sharma 《Computers, Materials & Continua》 SCIE EI 2022年第1期1955-1974,共20页
Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and ro... Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and rotation.This problem has been investigated,and a novice algorithm,namely RIFDS(Rotation Invariant Face Detection System),has been devised.The objective of the paper is to implement a robust method for face detection taken at various angle.Further to achieve better results than known algorithms for face detection.In RIFDS Polar Harmonic Transforms(PHT)technique is combined with Multi-Block Local Binary Pattern(MBLBP)in a hybrid manner.The MBLBP is used to extract texture patterns from the digital image,and the PHT is used to manage invariant rotation characteristics.In this manner,RIFDS can detect human faces at different rotations and with different facial expressions.The RIFDS performance is validated on different face databases like LFW,ORL,CMU,MIT-CBCL,JAFFF Face Databases,and Lena images.The results show that the RIFDS algorithm can detect faces at varying angles and at different image resolutions and with an accuracy of 99.9%.The RIFDS algorithm outperforms previous methods like Viola-Jones,Multi-blockLocal Binary Pattern(MBLBP),and Polar HarmonicTransforms(PHTs).The RIFDS approach has a further scope with a genetic algorithm to detect faces(approximation)even from shadows. 展开更多
关键词 pose variations face detection frontal faces facial expressions emotions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部